Firlough Hydrogen Plant

Groundwater Supply Assessment

Minerex Doc. Ref.: 3131-043 (Rev. 2)

Date: 21/06/2023

Report by:

Minerex Environmental Limited Hydrogeological, Environmental and Geophysical Services Taney Hall, Dundrum, Dublin 14, Ireland Dublin 14, Ireland Tel.: +353-(0)1-2964435 **Report To:**

Mr. John Duffy Mercury Renewables Coolcronan House Coolcronan Foxford Co Mayo

Prepared by:	Reviewed by:
Chi Fernell	Cecil Shine
Chris Fennell B.A (mod), Ph.D	Cecil Shine B.Sc., M.Sc., PGeo, EurGeol
Hydrogeologist	Project Director Hydrogeologist

Exec	utive Summary	1
1.Intr	oduction	3
2.Hyd	drogeological setting	4
2.1 2.2 2.3	Groundwater Vulnerability & Karst Features Bedrock	4 4 4
2.4 2.5 2.6	Overburden Groundwater Recharge Groundwater Wells	4 5 5
2.7	Surface Water & Protected Areas	5
3.BOI 3.1 3.2 3.3	Pumping Test Results	7 7 8
4.Zor	ne of Contribution	21
4.1	Zone of Contribution	21
5.Rai	nwater Harvesting	23
6.Wa	ter Supply: Groundwater & Rainfall	27
6.1 6.2 6.3	Water Balance Updated ZOC Contingency Supply	27 27 28
7.Imr	blications of Climate Change	29
8.Pot	ential Influence on Local Boreholes	31
9.Hyd	drochemistry	33
10.	Summary & Conclusions	35
11.	Recommendations	37
12.	References	38
13.	Appendices	39

Appendices

Appendix	Title	
А	Proposed plant layout	
В	Site outline map with monitoring points.	
С	Hydrogeological maps.	
D	Pumping test data.	
E	Conceptual cross section with drawdown.	
F	Conceptual Zone of Contribution.	
G	Hydrochemistry database.	
Н	Laboratory certificates of analysis.	

WORK AND REPORT LIMITATIONS

IMPORTANT: This section should be read before reliance is placed on any of the opinions, advice, interpretations, conclusions or recommendations in the following report.

- Although every effort has been made to ensure the accuracy of the material contained in this document, complete accuracy cannot be guaranteed. Neither the Minerex Environmental Limited nor the author(s) accept any responsibility whatsoever for loss or damage occasioned or claimed to have been occasioned, in part or in full, as a consequence of any person acting, or refraining from acting, as a result of a matter contained in this publication.
- 2. Minerex Environmental Limited (MEL) has prepared this document for the sole use of its client in accordance with the work authorised.
- 3. No warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by MEL. However, MEL does carry Professional Indemnity (PI) Insurance.
- 4. All or part of this document may not be reproduced or be relied upon by any other party without prior and express written permission from MEL.
- 5. Interpretations contained in this report are derived from available information of the site conditions, the likely environmental responses and the experience of the company.
- 6. MEL has prepared this report in line with best current practice and with all reasonable professional judgement, skill, care and diligence in consideration of the limits imposed by materials, equipment and methodologies used, and the time constraints and resources devoted to it as agreed with the client.
- 7. The interpretative basis of the conclusions contained in this report should be taken into account in any future use of this report. If the scope of the works includes drilling, pitting, sampling, or interpretation of such information, the client's attention is drawn to the fact that special risks occur whenever hydrogeological and related disciplines are applied to identify subsurface conditions.
- 8. The environmental, geological, geotechnical, geochemical, hydrological and hydrogeological conditions etc. that MEL interprets to exist between sampling points may differ from those that actually exist. Trial pitting and drilling, for example, exposes the subsoils over typically <1% of a site and in sites with long histories with several owners and business practices, interpretations and interpolations can be very different to the actual site conditions. Even a comprehensive sampling and testing programme, implemented in accordance with a professional Standard of Care considering Industry Standard Guidance, may fail to detect certain physical conditions, geology, geochemistry and hydrochemistry etc only discovered later on during bulk excavations for example.</p>
- Also, the passage of time, natural occurrences, and activities within and in the adjacent sites to the site, may substantially alter the discovered conditions at any time after the Site Investigations and interpretations are carried out by MEL.
- 10. Changes in the legislation, industry standards and guidance may cause opinion, advice, conclusions and recommendations set out in MEL reports to become out of date, inappropriate or incorrect. Once a report has been issued to a Client, MEL will have no obligation to advise the Client of any such changes, or their repercussions.
- 11. While MEL endeavours to take reasonable effort to assess data in hand at the time of writing and give the best advice possible, MEL will accept no responsibility for how the information within this report is interpreted and used. Where elements of this report are based upon information provided by others, it is assumed that all the relevant information has been supplied to MEL in full and is reliable, accurate and representative. It should always be assumed that MEL has not independently verified any information provided by others. MEL, its agents, directors, owners, employees, and contractors therefore will not be held responsible for any loss (reputation, financial, technical or otherwise) occurring from the use of this report, however caused.

Executive Summary

- 1. Minerex Environmental Limited was commissioned by Mercury Renewables to carry out a groundwater supply assessment for the proposed development of a combined windfarm and hydrogen production plant near Ballina, County Mayo.
- 2. Eight boreholes were drilled onsite as part of the investigation. Water strikes were noted by the driller in two boreholes (BH6 and BH7) which were subsequently selected for pump testing.
- 3. A constant rate discharge pumping test commenced on the 11/07/22 and pumping continued until the 03/08/2022 (approximately 546 hours of pumping in total).
- 4. Sustainable yields of 2.25 l/s (194 m³/d) and 0.44 l/s (38 m³/d) have been established for Boreholes 6 and 7, respectively, with a cumulative yield of 232 m³/d (84,680 m³/yr) which is consistent with the two boreholes being able to meet the water demand of the plant (annual water budget of 65,021 m³ or 178 m³/d).
- 5. Groundwater abstraction will be reduced through the implementation of rainwater harvesting. Preliminary calculations suggest that an average of 18,275 m³/yr would be a reasonable estimate from the roofed areas alone. An additional 33,751 m³/yr could be harvested from the remaining non-roofed area leading to a combined 52,026 m³/yr from rainwater, accounting for approximately 80% of the entire annual water demand.
- 6. A reduction in zone of contribution (ZOC) for the boreholes as a result of rainwater harvesting means that the volume of water being abstracted from the system is not greater than the volume of water recharging the aquifer over the landowner property area.
- 7. While climate change will bring about increased seasonality in rainfall patterns, the impact on groundwater recharge will be varied depending on local geology. Drought conditions would have generally detrimental consequences for groundwater supplies with ZOCs increasing in order to meet the same demand. A 50% safety factor has been used in the calculation of all ZOCs by way of a conservative approach to such changes.
- 8. Continuous and manual water level measurements taken at a borehole (FW1) supplying a neighbouring dairy farm for the duration of the pumping test and recovery period are consistent with the pumping having little discernible impact on the well.
- 9. A monitor and mitigate approach is recommended for proximal sensitive receptors (e.g., springs and other abstraction boreholes) to ensure that any potential impacts are minimized.

- 10. While the hydrochemical signatures of BH6, BH7, FW1 and SW1 all tend towards a calcium-magnesium-bicarbonate type, the pumping wells show a distinct cationic signature to FW1 and SP1 with relatively lower calcium concentrations and higher magnesium concentrations.
- 11. A strong hydrogen sulphide odour and reducing conditions were observed at BH6 and BH7 with visible limescale forming on equipment during the pumping test.
- 12. Reductions in flow at local springs (SP1 and SP2) were noted. However, further investigation would be required to ascertain whether this is due to pumping or low rainfall levels.

1. Introduction

Minerex Environmental Limited (MEL) was commissioned by Mercury Renewables (MR) to carry out a groundwater supply assessment for the proposed development of a combined windfarm and hydrogen production plant (Appendix A) near Ballina, County Mayo.

Current estimates indicate that an annual water budget of 65,021 m³ is required for hydrogen production. Water usage patterns will be dependent on the electricity produced by the windfarm.

The assessment includes the completion of a pumping test on two boreholes located on the proposed site in order to identify their respective sustainable yields. Concurrent monitoring was carried out within a network of observation wells, proximal groundwater springs and a well supplying a local landowner (Appendix B). MEL visited the site on the 11th, 12th and 22nd of July 2022.

Specific work items are as follows:

- 1. Assess the hydrogeological setting of the site including aquifer extent and properties.
- 2. Review the borehole logs and drillers notes for the 2 no. proposed production wells.
- 3. Design and execute pumping tests on 2 no. proposed production wells in order to identify likely sustainable yields. This includes instrumentation of production boreholes with high resolution water level loggers and the development of a manual water level monitoring regime for observation wells and a local spring.
- Sampling of production boreholes at various stages throughout the pumping tests and accredited laboratory analysis for key hydrochemical and microbiological quality parameters.
- 5. Assess the potential for rainwater harvesting and its contribution to the overall water demand.
- 6. Assess the long-term sustainability of the proposed extraction.
- 7. Assess the potential impact of the proposed abstraction on a neighbouring well supplying a local landowner.
- 8. Assess the potential impact of the proposed abstraction on other proximal boreholes.
- 9. Assess how climate change may affect the long-term sustainability of the supply.
- 10. Make subsequent recommendations for the management of the supply going forward.

2. Hydrogeological setting

Hydrogeological maps pertaining to the site are presented in Appendix C.

2.1 Groundwater Vulnerability & Karst Features

A high groundwater vulnerability classification (H) has been assigned to most of the site. A portion of the site to the south east has been assigned a moderate groundwater vulnerability. An area of extreme groundwater vulnerability borders the site to the west. This is consistent with mapped areas of bedrock outcrop. There are no mapped karst features in proximity to the site (Ref. 1).

2.2 Bedrock

The site is underlain by the Carboniferous Ballina Limestone Formation which is characterised by dark fine-grained limestone & shale. Outcrops are mapped as occurring to the west of the site. A northwest to southeast trending anticlinal axis is mapped to the north of the site (Ref. 1).

2.3 Aquifer Classification

The aquifer associated with the Ballina Limestone Formation is classified as a Locally Important Aquifer (LI), describing bedrock which is moderately productive only in local zones. The mapped areal extent of this aquifer is 102 km², extending west and north west to the Moy Estuary and Enniscrone, respectively, and south west to Bonniconlon.

The groundwater body (Code IE_WE_G_0034) status according to the Water Framework Directive Status (2013-2018) is listed as both good and not at risk.

2.4 Overburden

The quaternary sediments underlying much of the site are classed as till derived from limestones (TLs). The corresponding subsoil permeability is classed as moderate. A portion of the site to the south east is classed as cut over raised peat. This correlates with the area of moderate groundwater vulnerability mentioned above. Alluvium overburden is mapped to the south west of the site which is consistent with the mapped stream at this location.

2.5 Groundwater Recharge

Groundwater recharge properties for the site can be derived from the groundwater recharge map provided by the GSI – see Appendix C (Ref. 1). With respect to climatic variables, the map is generated from Met Éireann's 30-year average rainfall and actual evapotranspiration for the period 1971-2000. The effective rainfall (total rainfall – actual evapotranspiration) for the site is mapped as ranging from 710 mm/yr to 722 mm/yr.

The volume of effective rainfall likely to reach groundwater, i.e., recharge, can be estimated from recharge coefficients compiled by the Working Group on Groundwater, which are based on soil drainage, subsoil permeability, vulnerability and aquifer type (Ref. 2). A recharge coefficient of 60% has been applied to the site. Assuming effective rainfall of 710 mm/yr and a recharge coefficient of 60 % yields an average recharge value of 426 mm/yr. However, given the Locally Important classification applied to the aquifer, a recharge cap of 200 mm/yr has been applied due to the limited ability of the bedrock to accept recharge.

2.6 Groundwater Wells

The GSI Groundwater well, borehole and spring locations map was consulted in order to identify other local abstraction points (Ref. 1). The database contains records of boreholes, dug wells, springs, and ground site investigations derived from GSI drilling, fieldwork and surveys, Local Authorities and other state bodies, Private Well Grants, Drillers, Consultants, Group Water Schemes and Academia. The locations of records have different accuracies depending on the source data. It is must be noted that it is not a comprehensive database (Ref. 1).

The closest well to the site is located approximately 1.4km to north. Thee reported borehole details are as follows:

• GSI Name 1131NEW005: 30.5m deep borehole. Yield Class: Poor. Agri & domestic use. Located in proximity to the castle. Locational accuracy: 500m.

There are no other boreholes reported with at least 4 km of the site. However, given the stated poor accuracy of the database and the unregulated nature of private wells a survey would be required to accurately identify wells in the proximity to the site.

2.7 Surface Water & Protected Areas

The site is located in the Moy and Killala Bay catchment, Leaffony sub catchment and the Dooyeaghny or Cloonloughan sub basin. The Dooyeaghny or Cloonloughan stream flows

westwards along the southern boundary of the site. A groundwater spring SP1 rises at the south west corner of the site. This is likely one source of the South Corbally stream which is mapped as rising at the south west boundary of the site flowing westwards before joining the Dooyeaghny or Cloonloughan stream which eventually flows to the Moy (Ref. 3).

The Killala Bay and Moy Estuary are designated as both and Special Areas of Conservation (SAC) and Special Protection Areas (SPA).

3. Boreholes & Pumping Test

3.1 Boreholes

Eight boreholes were drilled onsite as part of the investigation (Table 3.1). Water strikes were noted by the driller in two boreholes (BH6 and BH7). Estimated yields established by the driller for BH6 and BH7 were 9 m³/hr and 2 m³/hr, respectively. It is understood that these yields were established from a shorter duration pumping test. An outline map of the site and the locations of the boreholes are presented in Appendix B.

	POSITION			Total	Donth to	Steel	Wator	Ectimated	
<u>BOREHOLE No.</u>	ITM (Eastings)	ITM (Northings)	Ground Level (maOD)	Depth (mbgl)	Depth (mbgl)	Bedrock (mbgl)	Casing Depth (mbgl)	Strike (mbgl)	Yield (m3/hr)
1	529550.720	822677.680	53.930	170	6	6			
2	529570.790	822677.170	53.010	195	6	6			
5	529623.100	822638.070	47.600	152	3	3			
6	529063.073	822788.959	53.819	183	6	6	80	9	
7	528933.395	822830.498	47.794	183	4	4	50	2	
8	529178.795	822583.564	47.241	152	3	3			
9	529337.182	822691.565	52.575	152	4	4			
11	528984.707	822729.161	46.942	158	3	3			

Table 3.1. Borehole data.

3.2 Pumping Test Design

Following data presented in Table 3.1., BH6 and BH7 were selected for pump testing in accordance with BS ISO 14686:2003 (Ref. 4). The remaining wells were used as observation wells during pumping. An additional well (FW1), supplying a neighbouring landowner and dairy farm was also monitored for the duration of the pumping test and recovery period to ascertain whether the proposed development would impact on the well.

Pumps were installed in both wells at a depth of 80m by Dullea Drilling. PVC rising mains, gate valves, flow meters and dip tubes were also installed. Instantaneous flows were measured using the bucket and stopwatch method. Outfalls from both rising main were placed a sufficient distance from the boreholes (downgradient and to the south) to ensure no short circuiting of recharge.

High resolution water level loggers were installed in BH6 and FW1 for the duration of the pumping test and recovery period. A manual water level monitoring regime using a Solinst Dip Meter was also implemented for all boreholes (pumping, observation, and FW1)

The constant rate discharge pumping test commenced on the 11/07/22 and pumping continued until the 03/08/2022 (approximately 546 hours of pumping in total). Recovery was monitored for a 3-day period by manual measurement in all boreholes and by the water level logger in FW1 for 1 week.

Spring flow was monitored at SP1, with several flow readings (container and stopwatch) taken from SP2, a concrete reservoir with a hand pump feeding the South Corbally Stream (Appendix C).

3.3 Pumping Test Results

All data, including manual water level measurements and flow readings are presented in Appendix D. Water levels and flow rates from the manual monitoring regime of the pumping wells are presented in Figures 3.1 and 3.2. Continuous water level data from BH6 and FW1 are presented in Figures 3.3 and 3.4. Manual water level readings from all observation wells (including FW1) are presented in Figure 3.5. Rainfall data, taken from a Met Eireann station at Knock Airport (approximately 30 km to the south east) is presented in Figure 3.6.

3.3.1 Borehole 6 (Pumping)

The pump in BH6 ran at full capacity for the duration of the test. At the initial pre-pumping water level (i.e., start of the test) the pumping rate was measured at 3.3 l/s, however, this reduced as drawdown and head both increased. After 24 hours, at a pumping rate of 2.5 l/s the rate of drawdown decreased (drawdown of 45.4m with a water level of 53.5 mbtoc). For the remainder of the test the pumping/dynamic water level remained relatively stable at approximately 56 mbtoc at a pumping rate of 2.25 l/s (194.4 m³/d), the likely sustainable yield of the well. This is consistent with the continuous water level logger data for BH6 (Figure 3.3).

Note, the slight drop in water levels observed in BH6 after 384 hours of pumping is consistent with an increase in flow from BH7 (as a result of the maintenance of a gate valve – see below), rather than boundary conditions.

3.3.2 Borehole 7 (Pumping)

Pumping at BH7 was interrupted temporarily after approximately 24 hours in order to remove the flow meter as it was causing excess friction loss, possibly due to scaling, that was restricting flow to approximately 0.35 l/s. Once removed, the pump running at full capacity was capable of pumping 0.85 l/s. This pumping rate, however, resulted in rapid drawdown to 75.4 mbtoc hence flow was reduced to 0.44 l/s. After approximately 312 hours of pumping, flow was restricted by gradual scaling of the gate valve. For the remainder of the test the pumping/dynamic water level remained relatively stable at approximately 73 mbtoc at a pumping rate of 0.44 l/s (38 m³/d), the likely sustainable yield of the well.

3.3.3 Observation Wells

Drawdown was monitored via manual measurements across the network of observation wells (Figure 3.5). With the exception of BH11, in general, the level of drawdown is consistent with proximity to the pumping wells as would be expected. Over the course of the pumping test, 9.2 m and 4.2 m of drawdown were observed in BH8 and BH9, respectively, with just 1.29 m of drawdown observed at BH5.

Notable variation in BH11 water levels was observed. Given its proximity to BH6 and BH7, it is likely that the drawdown observed is a result of pumping. However, monitoring shows periods of erratic rebound followed by further drawdown. These periods of rebound appear to be correlated with rainfall which is indicative of flashy borehole hydrograph.

A conceptual cross section showing static and dynamic water levels across the monitoring network is presented in Appendix E.

3.3.4 Borehole FW1

There was little discernible impact from the pumping test on FW1 (Figure 3.4 and 3.5). A drawdown of 8 cm was observed between the pre-pumping baseline measurement and the time when the pumping ceased. Continuous water level data were obtained for one week after the pumping ceased. Despite the cessation of pumping, further drawdown (approximately 10cm) was observed in FW1, despite the apparent recovery in the observation wells. It is likely that the drawdown in FW1 is consistent with usage and/or low levels of recharge.

REPORT BY Minerex Environmental Limited Doc. Ref. 3131-043 Rev.2

Figure 3.1. Borehole 6 pumping test data

Figure 3.2. Borehole 7 pumping test data

Figure 3.3. Borehole 6 continuous water level logger data.

Figure 3.4. Borehole FW1 continuous water level logger data.

Figure 3.5. Observation well water level data.

Figure 3.6. Rainfall data from Met Eireann monitoring station at Knock Airport (Ref. 5).

3.3.5 Aquifer & Borehole Properties

Specific Capacity [m3/d/m] gives an indication of how 'good' the yield is with respect to the corresponding drawdown observed. To derive a specific capacity, the discharge rate and drawdown at the end of a period where the rate was relatively constant has been used. The specific capacities for BH6 and BH7 have been calculated as 4.12 m³/d/m and 0.54 m³/d/m, respectively.

Groundwater flow through the aquifers is described by the Groundwater Flow Equation – Darcy's Law, which describes a coefficient of hydraulic conductivity (permeability) (K) [m/d], an important aquifer characteristic. However, it is known that hard rock aquifers or fractured rock aquifers, such as those common in Ireland and at the site in question, pose difficulties in characterising and predicting aquifer parameters. The preferred parameter to assess hydraulic properties in hard rock aquifers or fractured rock aquifers is transmissivity, due to its practical importance, availability of data and more reliable values as compared to hydraulic conductivity where data from well pumping tests usually reflect single or a handful of highly permeable factures surrounded by massive blocks of impermeable rock (Ref. 6).

Using the Logan method, based on these specific capacities, bulk transmissivities for BH6 and BH7 would be in the order 5 m²/day and 0.7 m²/day, respectively. These transmissivities are in line with published data for other "LI" classed aquifers (Figure 3.7) (Ref. 6). Note, these aquifer properties should be treated as an approximation only. The disparities in specific capacities and transmissivities between BH6 and BH7 and the network of observation wells that were found to be unproductive are consistent with fracture flow.

Figure 3.7. Aquifer transmissivity data from Irish Aquifer classes (Ref.6).

3.3.6 Spring (SP1 & SP2)

A notable reduction in water level/flow was observed at SP1 and SP2 (Figures 3.8 and 3.9, respectively). Flow at SP2 was measured at 0.65 l/s before pumping, however, it had reduced to 0.3 l/s after 10 days of continuous pumping. Flow further reduced to 0.06 l/s on the 01/08/22 at 8.00, however, it increased to 0.2 l/s by 20.00 on the same day. This is consistent with a heavy rainfall event (approximately 17mm) (see Figure 3.6).

Flow at SP2 did not increase after the cessation of the pumping test. While flow is apparently somewhat correlated with rainfall, further work would be required to identify the impact of the groundwater abstraction.

Figure 3.8. SP1 on the 11/07/22 i.e., pre-pumping (left) and after 10 days of pumping 22/07/22 (right).

Figure 3.9. SP2 on the 11/07/22 i.e., pre-pumping (left) and after 10 days of pumping 22/07/22 (right).

3.3.7 National Groundwater Levels & Springs Flows

Environmental Protection Agency hydrometric reports for July and August (Ref. 7 and Ref. 8) describe national rainfall, river flows and groundwater levels at the time of the pumping test. For both July and August, all monthly rainfall totals across the country were below their 1981-2010 Long-Term Average (LTA). The report notes that it was the driest August since 1995 at Markree, Co Sligo, located approximately 40 km east of the site.

Correspondingly, average groundwater levels in July decreased at 91% of monitoring wells compared to average levels observed in June (Figure 3.10). In August, groundwater levels were either below normal or particularly low in 84% of monitored wells (Figure 3.11). Several groundwater levels and springs flows monitored by the EPA in August in relative proximity to the site were particularly low.

Figure 3.10. EPA national groundwater level and spring flow monitoring report for July 2022 (Ref. 7)

Figure 3.11. EPA national groundwater level and spring flow monitoring report for August 2022 (Ref. 8)

4. Zone of Contribution

4.1 Zone of Contribution

The zone of contribution (ZOC) refers to the area surrounding a pumped well that encompasses all areas or features that supply groundwater recharge to the supply. A water balance calculation can be used to determine the size of the ZOC for the proposed abstractions. A conceptual cross section outlining a ZOC to a borehole is presented in Figure 4.1. Also shown is the concept of zone of influence or the area where drawdown occurs due to pumping.

Figure 4.1. Conceptual cross section illustrating the zone of contribution and zone of influence surrounding a borehole (Ref. 9).

Assuming the combined maximum sustainable yields of both wells as 2.69 l/s (approx. 233 m^3 /d and see Section 3.3), a simplified water budget based on the following methodology can be used:

Q/R = A Q = Annual volume of water abstracted (m³) R = Annual average recharge (m)A = Area of ZOC (m²) To allow for errors in the estimation of groundwater flow direction and to allow for an increase in the ZOC in dry weather, a safety margin is incorporated by assuming a higher abstraction rate rather than the estimated rate. Hence, the estimated abstraction rate is increased by 50% to 350 m³/d, which equates to approximately 127,750 m³/ year. Dividing this figure by the annual average recharge (0.200 m/year – see Section 2.5), gives an estimated theoretical ZOC or well catchment area of approximately 639,000 m². The approximate area of the landowner property (see boundary in Appendix B) is 265,000 m².

Current estimates indicate that an annual water budget of 65,021 m³ is required for hydrogen production, which is less than the proven combined sustainable yield of the wells. Dividing this figure by the annual average recharge (0.2 m/year) gives an estimated theoretical ZOC or well catchment area of approximately 325,000 m². If a safety factor of 50% is applied to the required volume (65,021 x $1.5 = 97,532 \text{ m}^3$), the ZOC increases to approximately 488,000 m² (see Appendix F). The zone of contribution is likely predominantly to the north of the site if consistent with local topography (Appendix F). In practice, the actual size, shape and orientation of the ZOC will be highly dependent on fracture flow.

Note, it is likely that the ZOC will be notably smaller given the intended use of rainwater harvesting (see Section 5 and Appendix F).

5. Rainwater Harvesting

In order to augment the groundwater supply, rainwater harvesting is to be employed at the facility. A water storage reservoir with a capacity of approximately 12,815 m³ is proposed for the site.

Preliminary water budget calculations have been developed in order to estimate the potential contribution of rainwater harvesting to the operational water requirements. Long term rainfall data has been obtained from Knock Airport (1997 – 2021) in order to estimate rainfall at the site (see Table 5.1). Average annual rainfall over this period was 1,372 mm/yr, ranging from 1,078 – 1,853 mm/yr. Average monthly rainfall for the same period is presented in Table 5.2.

Year	Annual Rainfall (mm/yr)	
1997	1,262	
1998	1,423	
1999	1,655	
2000	1,371	
2001	1,078	
2002	1,464	
2003	1,089	
2004	1,374	
2005	1,206	
2006	1,342	
2007	1,346	
2008	1,563	
2009	1,437	
2010	1,093	
2011	1,443	
2012	1,368	
2013	1,207	
2014	1,518	
2015	1,853	
2016	1,230	
2017	1,343	
2018	1,307	
2019	1,455	
2020	1,506	
2021	1,365	
Average	1,372	

Table 5.1 Rainfall data from Knock Airport (1997-2021)

Monthly Rainfall (mm/yr)					
	Average Max		Min.		
Jan	134	225	26		
Feb	113	277	27		
Mar	98	182	33		
Apr	77	128	21		
Мау	93	179	31		
Jun	94	230	38		
Jul	110	184	41		
Aug	117	208	35		
Sep	111	223	19		
Oct	131	197	59		
Nov	142	302	63		
Dec	151	348	54		

Table 5.2 Summar	y statistics for mont	hly rainfall at Knocl	Airport (1997-2021).
		5	

The footprint of the entire facility, as shown in Appendices A and B, is $64,000 \text{ m}^2$, of which buildings (i.e., roof area) account for $14,800 \text{ m}^2$. Using the long-term values for average, minimum and maximum rainfall presented above, the volume of rainfall landing on the site annually are presented in Table 5.3. Annual average rainfall of 1.372 m/yr over the entire footprint of the facility ($64,000 \text{ m}^2$) amounts to $87,808 \text{ m}^3$ /yr. Assuming the average rainfall over the roof area of the facility ($14,800 \text{ m}^2$) amounts to $20,306 \text{ m}^3$ /yr.

Table 5.3 Estimates of the rainfall landing on the facility (no yield coefficient applied).

No Yield Coefficient Applied		Total Site Area	Roofed Area	Site Area Not Roofed
		64,000 m ²	14,800 m ²	49,200 m²
Rainfall (Min)	1.078 m/yr	68,992 m³/yr	15,954 m³/yr	53,038 m³/yr
Rainfall (Average)	1.372 m/yr	87,808 m³/yr	20,306 m ³ /yr	67,502 m³/yr
Rainfall (Max)	1.853 m/yr	118,592 m ³ /yr	27,424 m³/yr	91,168 m ³ /yr

While these figures assume 100% of rainfall is captured, a yield or runoff coefficient should be applied to account for losses. The final design of the roof surfaces (e.g., pitch and roofing material) and the makeup of the site (e.g., concrete, paving, asphalt) will dictate the coefficients to be used. The coefficients should also consider potential losses associated with water treatment.

The yield coefficient for pitched roofs with profiled metal sheeting is quoted as 0.9, while for tiled roofs the coefficient is 0.8 (Ref. 10). A yield coefficient of 0.9 applied to the average

annual rainfall falling on the roof area of the site amounts to 18,275 m3/yr (Table 5.4 – see maximum and minimum values also).

0.0 Vield Coefficient Applied		Roofed Area
	14,800 m²	
Rainfall (Min)	1.078 m/yr	14,359 m³/yr
Rainfall (Average)	1.372 m/yr	18,275 m³/yr
Rainfall (Max)	1.853 m/yr	24,682 m ³ /yr

Table 5.4 Estimates of the rainfall landing on the roofed areas (yield coefficient applied).

The yield coefficient for concrete or asphalt can range from 0.8 - 0.9, while for grassed areas or permeable paving it will naturally be lower (Ref. 11). A composite coefficient based on the percentage of different types of surfaces over the proposed plant area should be developed.

While further assessment (i.e., development of a composite coefficient) would be required to refine the maximum amount of water obtainable from rainwater harvesting, applying a coefficient of 0.5 to the average rainfall over the remainder of the plant area (67,502 m³/yr x 0.5) would yield approximately an additional 33,751 m³/yr.

Note, these figures have been calculated based on average rainfall values and do not account for seasonal variations or variations in intensity. However, using the average monthly rainfall values presented in Table 5.2., the indicative rainfall capture volumes per month are presented in Table 5.5.

The drainage infrastructure and tank sizing should be optimised to ensure the most amount of rainfall can be captured.

	Average Monthly Rainfall	Roofed Area (0.9 runoff coefficient applied)	Site Area Not Roofed (0.5 runoff coefficient applied)
	(mm/yr)	14,800 m ²	49,200 m ²
Jan	0.134	1788 m ³ /yr	3303 m³/yr
Feb	0.113	1509 m ³ /yr	2788 m³/yr
Mar	0.098	1304 m ³ /yr	2407 m ³ /yr
Apr	0.077	1029 m ³ /yr	1901 m³/yr
Мау	0.093	1245 m ³ /yr	2299 m ³ /yr
Jun	0.094	1254 m³/yr	2315 m ³ /yr
Jul	0.110	1460 m ³ /yr	2696 m ³ /yr
Aug	0.117	1565 m³/yr	2890 m ³ /yr
Sep	0.111	1579 m ³ /yr	2732 m ³ /yr
Oct	0.131	1740 m ³ /yr	3213 m ³ /yr
Nov	0.142	1893 m ³ /yr	3495 m ³ /yr
Dec	0.151	2007 m ³ /yr	3706 m ³ /yr
Total	1.372	18,272 m³/yr	33,746 m³/yr

Table 5.5. Indicative rainfall capture volumes per month based on average monthly rainfall.

6. Water Supply: Groundwater & Rainfall

6.1 Water Balance

Current estimates indicate that an annual water budget of 65,021 m³ is required for hydrogen production. While this corresponds to approximately 178 m³/d, the water usage patterns will be dependent on the electricity produced by the windfarm. It is proposed to install a water storage reservoir onsite with a capacity of 12,815 m³ in order to buffer the balance between water supply and usage.

As presented in Section 3, sustainable yields of 2.25 l/s ($194 \text{ m}^3/\text{d}$) and 0.44 l/s ($38 \text{ m}^3/\text{d}$) have been established for Boreholes 6 and 7, respectively, with a cumulative yield of 232 m³/d ($84,680 \text{ m}^3/\text{yr}$) which is consistent with the two boreholes being able to meet the water demand of the plant.

Groundwater abstraction will be reduced through the implementation of rainwater harvesting. Preliminary calculations using average rainfall values derived from long term historical data suggest that an average of 18,275 m³/yr would be a reasonable estimate from the roofed areas alone. Applying a runoff coefficient of 0.5 over the remainder of the plant area would yield approximately an additional 33,751 m³/yr, leading to a combined 52,026 m³/yr from rainwater, accounting for approximately 80% of the entire annual water demand.

6.2 Updated ZOC

The potential for obtaining a portion of the required water demand from rainfall would significantly reduce groundwater abstraction volumes, consequently reducing the ZOC. The potential balance between rainfall and groundwater contributions and the corresponding ZOC (assuming 0.2 m/yr recharge – see Section 2.5) is presented in Table 6.1.

If half of the required water demand is met by rainwater harvesting then the ZOC for the abstraction boreholes would not be greater than the landowner property area (see Appendix F). This reduction in the ZOC means that the volume of water being abstracted from the system is not greater than the volume of water recharging the aquifer over the landowner property area.

Contribution from Rainfall to Total Required Volume	Remainder Abstracted from Groundwater	ZOC Area (m ²⁾ (plus 50% safety factor)
0% (0 m³)	65,021 m ³	488,000
25% (16,255 m³)	48,766 m ³	366,000
50% (32,511 m³)	32,510 m ³	244,000
75% (48,766 m ³)	16,255 m ³	122,000
100% (65,021 m ³)	0 m ³	0

Table 6.1. Relationship between rainfall, groundwater and ZOC area.

6.3 Contingency Supply

In the event that a supplementary supply of water is required, it is proposed that the facility is connected to the local mains water supply network. This contingency option could be used in the event of prolonged drought conditions.

7. Implications of Climate Change

Consideration must be given to the sustainability of the proposed groundwater abstraction, given its context in a time of climate change and increased climate variability. Changes in climate are likely to have a significant impact surface and groundwaters, however, compared with surface water resources, there has been less research into the potential impacts of climate change on groundwater.

The climate pattern across Ireland is projected to change towards decreasing mean annual and seasonal (spring and summer) rainfall; increasing number of wet (>20 mm/d) and very wet (>30 mm/d) days; increasing mean annual and seasonal temperatures and increasing number of extended dry periods and droughts (Ref. 12).

While significant changes in precipitation are forecasted, due to the heterogeneity of Irish geology complex interactions between subsoil properties, aquifer properties, effective rainfall amount and rainfall timing means that there is not just one type of predicted impact on groundwater systems (Ref. 13). Studies have shown that the impact can be highly variable depending on these climatic and geological variables.

For instance, while the Intergovernmental Panel on Climate Change (IPCC, 2001) suggested that increased winter rainfall was likely to result in increased groundwater recharge. Ref. 13 states that groundwater recharge volumes may not necessarily increase over much of Ireland due to the nature of Irish bedrock aquifers.

Potential scenarios for groundwater recharge as a result of a changing climate, aquifer type and subsoil cover are presented by (Ref. 13). Poorly productive aquifers (such as the aquifer underlying the proposed site which is assigned an LI classification – see Section 2.3) generally have limited ability to (a) accept recharge to the groundwater; (b) transmit the recharge laterally, thereby creating space to accept more recharge. Therefore, greater rainfall amounts in winter will not contribute to greater recharge, since it cannot be accepted by the aquifers. Even current annual rainfall amounts in the west (up to 2000mm) mainly run off, rather than recharge poorly productive aquifers.

In addition to aquifer properties and classification, subsoil permeability influences how quickly effective rainfall can percolate into the subsurface to become groundwater recharge. For instance, in areas overlain by moderate permeability subsoils (such as the proposed site), different rainfall intensity patterns may not result in higher recharge, since the vertical permeability cannot transmit high rainfall down into the subsurface quickly enough.

A study by Ref. 14 carried out a sensitivity analysis to assess how changing meteorological variables (rainfall quantity, its intensity and seasonality) and hydrogeological variables influence groundwater recharge. It was found that increased rainfall, seasonality and intensity would lead to increased recharge in areas underlain by aquifers with good storage and throughput capacity. However, it was found that there would be little effect on recharge to the poorly productive aquifers such as the at the location in question due to the geological setting.

Consequently, catchments that have higher storage capacity are thought to be less vulnerable to climate change impacts than those with lower storage capacity. The storage acts as a 'buffer' against the extreme events i.e., increased storage and recharge to offset summer droughts and higher infiltration capacities to reduce the risk of winter flooding (Ref. 14).

It follows therefore that poorer aquifers are more susceptible to increased seasonality due to the lesser ability to buffer against summer droughts. Under current conditions the late autumn and winter recharge period is critical to sustaining groundwater levels throughout the year. Any significant reductions in storage during this time of the year will increase the risk of severe drought, as the failure of winter or spring precipitation may result in prolonged drought periods where the groundwater system is unable to recover from previous dry spells.

Drought conditions would have generally detrimental consequences for supplies. In areas where recharge decreases, the zones of contribution (ZOCs) to boreholes will increase in order to meet the same demand. It must be noted that due to the uncertainties associated with projected changes in precipitation, projected changes in hydrological response remain subject to a high level of uncertainty. By way of a conservative approach a 50% safety factor has been used in the calculation of all ZOCs in Section 6.

Water quality must also be considered in a changing climate. In certain circumstances, increases in higher rainfall and rainfall intensity may have adverse effects on the groundwater quality. Pulses of contaminants, such as nitrates or pesticides, may pose a problem to groundwater at the beginning of the recharge period following drought periods.

8. Potential Influence on Local Boreholes

The proposed abstraction rates, commitment to rainwater harvesting and the corresponding water balance calculations are consistent with the proposed abstraction being sustainable.

Continuous and manual water level measurements taken at a borehole (FW1) supplying a neighbouring dairy farm for the duration of the pumping test and recovery period are consistent with the pumping having little discernible impact on the well.

The Environment Agency (Ref. 9) provide several Hydrogeological Impact Appraisal (HIA) methodologies to assess the impact of groundwater abstractions on receptors, such as boreholes. The approach centres on the development of a conceptual model that is refined using a tiered approach of investigation.

The guidance, however, notes the challenges for carrying out such assessments in karstic or fractured crystalline aquifers as their properties violate the assumptions built into many models and analytical equations (i.e., that the aquifer is homogenous and isotropic). While the aquifer in question is not classified as karstic, as discussed in Section 3.3.5, flow is likely to be fracture dominated. In such fractured aquifers, hydraulic properties can vary greatly over short distances meaning that two different boreholes (such as BH6 and BH7 and the observation network) can have notably different yields (Ref. 9). While bulk aquifer characteristics can be estimated, the location and typology of the fracture network are difficult to accurately characterise.

Consequently, the Environment Agency suggest a modified HIA method with an emphasis on a monitor and mitigate approach.

The monitor and mitigate approach sets out eight steps as follows:

- Step 1: Establish the regional water resource status.
- Step 2: Develop a conceptual model for the abstraction and the surrounding area.
- Step 3: Identify sensitive sites.
- Step 4: Commence preliminary monitoring at those sites.
- Step 5: Design and demonstrate effective mitigation measures for the sensitive sites.
- Step 6: Specify trigger levels for the mitigation measures.
- Step 7: Continue surveillance monitoring at the sensitive sites.
- Step 8: If necessary, implement mitigation measures when trigger levels have been passed.

Considerable information has been obtained through this pumping test investigation with a conceptual model presented herein (i.e., Step 1 and Step 2). Further investigation should be

carried out in order to identify sensitive sites (Step 3). At a minimum SP1 And SP2 (Section 3.3.6) should be monitored to obtain baseline flow data. As discussed in Section 2.6, given the unregulated nature of private wells and the absence of a database pertaining to their existence/location, a survey would be required to accurately identify wells in the proximity to the site. This should be targeted towards the area encompassing the ZOC shown in Appendix x.x. If boreholes are identified in this area, they should be targeted for baseline monitoring.

Once all sensitive sites are identified, baseline monitoring should be commenced (Step 4). Potential mitigation measures can then be developed. Such measures need to be informed by the baseline monitoring, but could include the use of a contingency supply, the direct supply of water to a third-party user, to replace or compensate for a groundwater source that has been derogated, or provision of an alternative water supply such as connection to a mains supply (Ref. 9) (Step 5).

Trigger levels (Step 6), which form the link between monitoring and mitigation should then be defined (i.e., at what stage are mitigation measures implemented). Trigger levels could be defined using several different variables, such as water levels in observation or neighbouring boreholes or a variety of statistical approaches based on maximum or minimum water levels.
9. Hydrochemistry

Baseline samples were taken from both FW1 and SP1 before the pumping test commenced (11/07/22). Samples were taken from BH6 and BH7 at the start of the pumping test (also 11/07/22). Further samples were taken from BH6 and BH7 on the 12/07/22. All four sampling locations were sampled again on the 22/07/22 approximately 240 hours after the pumping test had commenced. Field hydrochemistry (pH, electrical conductivity, temperature and redox) was taken at the time of sampling. All samples were tested for a suite of major and minor ions, metals and microbiological indicators.

All sampling results are presented in a hydrochemistry database (Appendix G). All results are screened against pertinent legislative limits Groundwater Regulations (S.I No. 366 of 2016 – Ref. 16). Official laboratory certificates of analysis are presented in Appendix H.

A strong hydrogen sulphide odour was noted from both BH6 and BH7 for the duration of the pumping test. Strongly reducing conditions (eH values ranging from -196 mV to -269 mV) were also noted.

Elevated levels of Ammoniacal nitrogen were apparent in BH6 and BH7 (in excess of the limit set by GW Regs (Ref. 16). Positive detections of both Total Coliforms and *E. coli* were found at both FW1 and SP1. As these microbial indicators were present both pre and during the pumping test their presence is likely not attributable to the pumping activities. Low levels of Total Coliforms were detected in two of the six samples taken from the pumping wells.

Hydrochemical signatures or facies of the four sampling locations both pre-pumping and 240 hours into the pumping test are presented in a trilinear Piper Plot in Figure 9.1. The anionic properties of all four locations are notably similar with a strong bicarbonate signature. The pumping wells show a distinct cationic signature to FW1 and SP1. Both FW1 and SP1 show a strong calcium dominated signature, while BH6 and BH7 show a more mixed signature which is a result of relatively lower calcium concentrations and higher magnesium concentrations. In general, the signatures tend towards a calcium-magnesium-bicarbonate type.

Considerable limescale build up was noted on the ground at the discharge points from both wells. This is consistent with the hydrochemical signature.

Figure 9.1. Hydrochemical signatures.

10. Summary & Conclusions

- 1. Minerex Environmental Limited was commissioned by Mercury Renewables to carry out a groundwater supply assessment for the proposed development of a combined windfarm and hydrogen production plant near Ballina, County Mayo.
- Eight boreholes were drilled onsite as part of the investigation. Water strikes were noted by the driller in two boreholes (BH6 and BH7) which were subsequently selected for pump testing.
- 3. A constant rate discharge pumping test commenced on the 11/07/22 and pumping continued until the 03/08/2022 (approximately 546 hours of pumping in total).
- 4. Sustainable yields of 2.25 l/s (194 m³/d) and 0.44 l/s (38 m³/d) have been established for Boreholes 6 and 7, respectively, with a cumulative yield of 232 m³/d (84,680 m³/yr) which is consistent with the two boreholes being able to meet the water demand of the plant (annual water budget of 65,021 m³ or 178 m³/d).
- 5. Groundwater abstraction will be reduced through the implementation of rainwater harvesting. Preliminary calculations suggest that an average of 18,275 m³/yr would be a reasonable estimate from the roofed areas alone. An additional 33,751 m³/yr could be harvested from the remaining non-roofed area leading to a combined 52,026 m³/yr from rainwater, accounting for approximately 80% of the entire annual water demand.
- 6. A reduction in zone of contribution (ZOC) for the boreholes as a result of rainwater harvesting means that the volume of water being abstracted from the system is not greater than the volume of water recharging the aquifer over the landowner property area.
- 7. While climate change will bring about increased seasonality in rainfall patterns, the impact on groundwater recharge will be varied depending on local geology. Drought conditions would have generally detrimental consequences for groundwater supplies with ZOCs increasing in order to meet the same demand. A 50% safety factor has been used in the calculation of all ZOCs by way of a conservative approach to such changes.
- 8. Continuous and manual water level measurements taken at a borehole (FW1) supplying a neighbouring dairy farm for the duration of the pumping test and recovery period are consistent with the pumping having little discernible impact on the well.
- A monitor and mitigate approach is recommended for proximal sensitive receptors (e.g., springs and other abstraction boreholes) to ensure that any potential impacts are minimized.
- 10. While the hydrochemical signatures of BH6, BH7, FW1 and SW1 all tend towards a calcium-magnesium-bicarbonate type, the pumping wells show a distinct cationic

signature to FW1 and SP1 with relatively lower calcium concentrations and higher magnesium concentrations.

- 11. A strong hydrogen sulphide odour and reducing conditions were observed at BH6 and BH7 with visible limescale forming on equipment during the pumping test.
- 12. Reductions in flow at local springs (SP1 and SP2) were noted. However, further investigation would be required to ascertain whether this is due to pumping or low rainfall levels.

11. Recommendations

- 1. WATER DEMAND & BUDGET: A detailed breakdown of water demand (e.g., volume and timing) should be developed to determine detailed water usage.
- 2. RAINWATER HARVESTING: Rainwater harvesting from roofs and hard standings should be implemented. The plant and associated infrastructure should be designed to maximise potential capture.
- SUPPLY LIMITATIONS: The sustainable yields established from the pumping test should be considered a maximum yield. A reduction in yield should be allowed for through well losses over time. Allowances should also be made for periods of downtime associated with routine maintenance or pump failure.
- BACKUP SUPPLY: Additional boreholes could be constructed to augment the supply. The siting of such boreholes should be guided by geophysical surveys with subsequent drilling supervised by a hydrogeologist.
- BASELINE MONITORING: In accordance with the recommended monitor and mitigate approach proximal sensitive receptors (e.g., springs and other abstraction boreholes) should identified and monitored pre development. This data should be used to identify triggers for targeted mitigation measures.

12. References

No.	Description	Minerex Doc. Ref.
1.	Geological Survey of Ireland (2022) Public Data Viewer Series. Available at: https://www.gsi.ie/en-ie/data-and-maps/Pages/d efault.aspx	
2.	Hunter Williams, N.H., Misstear, B.D., Daly, D and Lee, M (2013) Development of a national groundwater recharge map for the Republic of Ireland. <i>Journal of Engineering Geology and Hydrogeology</i> , 46 , 493-506.	
3.	Environmental Protection Agency Map Viewer (2022) Environmental Protection Agency. Available at: https://gis.epa.ie/EPAMaps/	
4.	British Standards (2022) ISO 14686:2003. Hydrometric determinations: Pumping tests for water wells - Considerations and guidelines for design, performance and use.	
5.	Met Eireann (2022) Daily Data. Available at: https://www.met.ie/climate/available-data/daily-data	
6.	Kelly, C., Hunter Williams, T., Misstear, B.M and Motherway, K (2015) Irish Aquifer Properties – A reference manual and guide. Prepared on behalf of the Geological Survey of Ireland and the Environmental Protection Agency.	
7.	Environmental Protection Agency (2022) Monthly Hydrology Bulletin: Edition 027: July 2022	
8.	Environmental Protection Agency (2022) Monthly Hydrology Bulletin: Edition 028: August 2022	
9.	Environment Agency (2007) Hydrogeological impact appraisal for groundwater abstractions. Science Report – SC040020/SR2	F2252
10.	Department of Agriculture, Food and the Marine (2020) Farm Building Structures and Specifications: Minimum Specifications for Rainwater Harvesting Equipment.	
11.	Ferguson, B. K and Debo, T. N (1990) On-site Stormwater Management: Applications for Landscape and Engineering. Wiley.	
12.	Nolan, P and Flanagan, J (2020) High-resolution Climate Projections for Ireland – A Multimodel Ensemble Approach. Environmental Protection Agency (EPA), Johnstown Castle, Co. Wexford, Ireland	
13.	Hunter-Williams, H and Lee, M (2010) Ireland at risk – Possible implications for groundwater resources of climate change. Groundwater Section,	
14.	Cantoni, E., Misstear, B.D.R and Gill, L (2017) Climate change impacts on groundwater recharge to Irish fractured bedrock aquifers. National Hydrology Conference.	
15.	S.I No. 366 of 2016 - Groundwater Regulations	F2240

13. Appendices

REPORT BY Minerex Environmental Limited Doc. Ref. 3131-043 Rev.2

APPENDIX A

REPORT BY Minerex Environmental Limited Doc. Ref. 3131-043 Rev.2

APPENDIX B

REPORT BY Minerex Environmental Limited Doc. Ref. 3131-043 Rev.2

APPENDIX C

Drawing Title Bedrock Geology

Client: Project: 3131 Hydrogen Plant - Co. Sligo

Drawing Ref: 3131-008 Drawn by: CF 25/10/2022

Common Legend

Landowner Property

CDBALNL

Ballina Limestone Formation (Lower) *Dark fine-grained limestone and shale.*

Proposed hydrogen production facility outline

Source: Geological Survey Ireland

Minerex Environmental

Drawing Title Aquifer Classification

Client: Project: 3131 Hydrogen Plant - Co. Sligo

Drawing Ref: 3131-008 Drawn by: CF 25/10/2022

Common Legend

- LI Locally Important Aquifer - Bedrock which is moderately productive only in local zones
- Lg Locally Important Gravel Aquifer
- Proposed hydrogen production facility outline

Source: Geological Survey Ireland

Minerex Environmental

Drawing Title Groundwater Vulnerability

Client: Project: 3131 Hydrogen Plant - Co. Sligo

Drawing Ref: 3131-008 Drawn by: CF 25/10/2022

Common Legend

Landowner Property

Proposed hydrogen production facility outline

Source: Geological Survey Ireland

REPORT BY Minerex Environmental Limited Doc. Ref. 3131-043 Rev.2

APPENDIX D

Date & Time		Monit	oring point	Water	level, y	ield, &	wellhea	Comments		
				Water levels	2	~	Flow F	Rate	Odour	
			Delateteter	vels	nn (m	ш ч	~	(H)		
24hr	Element time		(pumping or	er lev FOC	лорл	dual /dow	r (IVs)	, (m ³		
hour:minute:second)	(Hours:Minutes)	ID	observation)	Wate (mb ¹	Drav	Resi drav	Nov	Flow		
			,							
11/07/22 13:40:00	00:00	BH6	Pumping well	7.96	0.00			0.0	H2S	Static water level. Pre-pumping
11/07/22 14:03:00	00:00	BH6	Pumping well	12.10	4.14		3.3	11.9	H2S	PUMP ON
11/07/22 14:04:00	00:01	BH6	Pumping well	18.04	8.54			0.0	H2S H2S	
11/07/22 14:06:00	00:03	BH6	Pumping well	20.00	12.04			0.0	H2S	
11/07/22 14:07:00	00:04	BH6	Pumping well	20.90	12.94			0.0	H2S	
11/07/22 14:08:00	00:05	BH6	Pumping well	22.11	14.15		3.1	11.2	H2S	
11/07/22 14:09:00	00:06	BH6	Pumping well	22.69	14.73			0.0	H2S	
11/07/22 14:10:00	00:07	BH6	Pumping well	23.30	15.34			0.0	H2S	
11/07/22 14:12:00	00:09	BH6	Pumping well	24.55	16.59			0.0	H2S	
11/07/22 14:13:00	00:10	BH6	Pumping well	25.05	17.09			0.0	H2S	
11/07/22 14:14:00	00:11	BH6	Pumping well	25.56	17.60			0.0	H2S	
11/07/22 14:15:00	00:12	BH6	Pumping well	26.00	18.04			0.0	H2S	
11/07/22 14:16:00	00.13	BH6	Pumping well	26.45	18.92			0.0	H2S	
11/07/22 14:18:00	00:15	BH6	Pumping well	27.25	19.29		3	10.8	H2S	
11/07/22 14:19:00	00:16	BH6	Pumping well	27.64	19.68			0.0	H2S	
11/07/22 14:20:00	00:17	BH6	Pumping well	27.96	20.00			0.0	H2S	
11/07/22 14:21:00	00:18	BH6	Pumping well	28.37	20.41		2	0.0	H2S	
11/07/22 14:22:00	00:19	BH6	Pumping well	28.05	20.69		3	0.0	H2S	
11/07/22 14:24:00	00:21	BH6	Pumping well	29.31	21.35			0.0	H2S	
11/07/22 14:25:00	00:22	BH6	Pumping well	29.56	21.60			0.0	H2S	
11/07/22 14:26:00	00:23	BH6	Pumping well	29.85	21.89			0.0	H2S	
11/07/22 14:29:00	00:26	BH6	Pumping well	30.4	22.44		3	10.8	H2S	
11/07/22 14:40:00	00.37	BH6	Pumping well	34.89	24.99		2.9	10.0	H2S	
11/07/22 15:03:00	01:00	BH6	Pumping well	36.47	28.51			0.0	H2S	
11/07/22 15:13:00	01:10	BH6	Pumping well	37.70	29.74			0.0	H2S	
11/07/22 15:23:00	01:20	BH6	Pumping well	38.75	30.79		2.9	10.4	H2S	
11/07/22 15:56:00	01:53	BH6	Pumping well	41.43	33.47		0.7	0.0	H2S	
11/07/22 10:30:00	02.27	BH6	Pumping well	43.23	36.53		2.1	9.7	H2S	
11/07/22 17:30:00	03:27	BH6	Pumping well	45.44	37.48		2.7	9.7	H2S	
11/07/22 18:00:00	03:57	BH6	Pumping well	46.39	38.43		2.5	9.0	H2S	
11/07/22 22:45:00	08:42	BH6	Pumping well	46.39	38.43		0	0.0	H2S	
12/07/22 08:30:00	18:27	BH6	Pumping well	52.01	44.05		2.5	9.0	H2S	
12/07/22 14:00:00	26:57	BH6	Pumping well	53.64	45.54		2.5	9.0	H2S	
12/07/22 20:00:00	29:57	BH6	Pumping well	53.70	45.74			0.0	H2S	
13/07/22 08:00:00	41:57	BH6	Pumping well	54.14	46.18		2.33	8.4	H2S	
13/07/22 11:00:00	44:57	BH6	Pumping well	54.23	46.27		2.33	8.4	H2S	
13/07/22 14:00:00	47:57	BH6	Pumping well	54.30	46.34		2.33	8.4	H2S	
13/07/22 20:00:00	53:57	BH6	Pumping well	54 29	46.33		2.33	8.4	H2S	
14/07/22 08:00:00	65:57	BH6	Pumping well	54.61	46.65		2.33	8.4	H2S	
14/07/22 11:00:00	68:57	BH6	Pumping well	54.61	46.65		2.33	8.4	H2S	
14/07/22 14:00:00	71:57	BH6	Pumping well	54.74	46.78		2.33	8.4	H2S	
14/07/22 17:00:00	74:57	BH6	Pumping well	54.74	46.78		2.33	8.4	H2S	
15/07/22 08:00:00	89:57	BH6	Pumping well	54.71	46.75		2.33	8.4	H2S	
15/07/22 11:00:00	92:57	BH6	Pumping well	54.98	47.02		2.33	8.4	H2S	
15/07/22 14:00:00	95:57	BH6	Pumping well	54.87	46.91		2.3	8.3	H2S	
15/07/22 17:00:00	98:57	BH6	Pumping well	55.03	47.07		2.3	8.3	H2S	
15/07/22 20:00:00	101:57	BH6	Pumping well	54.84	46.88		2.3	8.3	H2S	
16/07/22 11:00:00	116:57	BH6	Pumping Well	52.02	47.00		2.28	0.2 8 3	H2S	
16/07/22 14:00:00	119:57	BH6	Pumping well	55.19	47.23		2.3	8.3	H2S	
16/07/22 17:00:00	122:57	BH6	Pumping well	55.17	47.21		2.33	8.4	H2S	
16/07/22 20:00:00	125:57	BH6	Pumping well	55.25	47.29		2.3	8.3	H2S	
17/07/22 08:00:00	137:57	BH6	Pumping well	55.06	47.10		2.3	8.3	H2S	
17/07/22 11:00:00	140:57	BH6	Pumping well	55 29	47.17		2.3	8.5	H2S	
			1						1	

Date & Time

Monitoring point Wa

				Watar			Elow Bo	t 0	Odour	
				levels			FIOW Ra	te	Odour	
				<i>(</i>)	Ê	Ê				
0 .41			Point status	evels C)) UM	nn (j	(s	3/h)		
24hr (day-month-year	Elapsed time		(pumping or	ter le	opwi	wdo	×()	لے م		
hour:minute:second)	(Hours:Minutes)	ID	observation)	Wa (mt	Dra	dra	<u>e</u>	р Н		
17/07/22 17:00:00	146:57	BH6	Pumping well	55.30	47.34		2.33	8.4	H2S	
17/07/22 20:00:00	149:57	BH6	Pumping well	55.23	47.27		2.28	8.2 8.1	H2S	
18/07/22 11:00:00	164:57	BH6	Pumping well	55.16	47.20		2.17	7.8	H2S	
18/07/22 14:00:00	167:57	BH6	Pumping well	55.29	47.33		2.20	7.9	H2S	
18/07/22 17:00:00	170:57	BH6	Pumping well	55.24	47.28		2.30	8.3	H2S	
18/07/22 20:00:00	173:57	BH6	Pumping well	55.21	47.25		2.27	8.2 8.3	H2S	
19/07/22 11:00:00	188:57	BH6	Pumping well	55.13	47.17		2.27	8.2	H2S	
19/07/22 14:00:00	191:57	BH6	Pumping well	55.13	47.17		2.27	8.2	H2S	
19/07/22 17:00:00	194:57	BH6	Pumping well	55.16	47.20		2.27	8.2	H2S	
19/07/22 20:00:00 20/07/22 08:00:00	197:57 209:57	BH6	Pumping well	55.24 55.22	47.28		2.30	8.3 8.2	H2S H2S	
20/07/22 11:00:00	212:57	BH6	Pumping well	55.27	47.31		2.30	8.3	H2S	
20/07/22 14:00:00	215:57	BH6	Pumping well	55.27	47.31		2.30	8.3	H2S	
20/07/22 17:00:00	218:57	BH6	Pumping well	55.30	47.34		2.25	8.1	H2S	
20/07/22 20:00:00	221:57	BH6 BH6	Pumping well	55.30	47.34		2.25	8.1 8.2	H2S H2S	
21/07/22 11:00:00	236:57	BH6	Pumping well	55.38	47.42		2.247	8.1	H2S	
21/07/22 14:00:00	239:57	BH6	Pumping well	55.31	47.35		2.273	8.2	H2S	
21/07/22 17:00:00	242:57	BH6	Pumping well	55.33	47.37		2.299	8.3	H2S	
21/07/22 20:00:00	245:57	BH6 BH6	Pumping well	55.51	47.55		2.41	8.7	H2S H2S	
22/07/22 11:00:00	260:57	BH6	Pumping well	55.37	47.41		2.27	8.2	H2S	
22/07/22 14:00:00	263:57	BH6	Pumping well	55.35	47.39		2.30	8.3	H2S	
22/07/22 17:00:00	266:57	BH6	Pumping well	55.05	47.09		2.25	8.1	H2S	
22/07/22 20:00:00	269:57	BH6	Pumping well	55.34	47.38		2.30	8.3	H2S	
23/07/22 08:00:00	284:57	BH6	Pumping well	55.40	47.39		2.33	8.3	H2S	
23/07/22 14:00:00	287:57	BH6	Pumping well	55.41	47.45		2.27	8.2	H2S	
23/07/22 17:00:00	290:57	BH6	Pumping well	55.30	47.34		2.30	8.3	H2S	
23/07/22 20:00:00	293:57	BH6	Pumping well	55.28	47.32		2.27	8.2	H2S	
24/07/22 08:00:00	305:57	BH6	Pumping well	55.33	47.37		2.30	0.3 8.2	H2S	
24/07/22 14:00:00	311:57	BH6	Pumping well	55.29	47.33		2.30	8.3	H2S	
24/07/22 17:00:00	314:57	BH6	Pumping well	55.25	47.29		2.27	8.2	H2S	
24/07/22 20:00:00	317:57	BH6	Pumping well	55.14	47.18		2.33	8.4	No odour	
25/07/22 08:00:00	329:57	BH6	Pumping well	55.10	47.14		2.30	8.3	H2S	
26/07/22 08:00:00	353:57	BH6	Pumping well	54.90	46.94		2.30	8.3	H2S	
26/07/22 20:00:00	365:57	BH6	Pumping well	54.89	46.93		2.27	8.2	H2S	
27/07/22 08:00:00	377:57	BH6	Pumping well	54.79	46.83		2.30	8.3	H2S	
27/07/22 20:00:00	389:57 401:57	BH6	Pumping well	55.64	47.68		2.25	8.1	H2S	
28/07/22 20:00:00	413:57	BH6	Pumping well	55.70	47.74		2.25	8.1	H2S	
29/07/22 08:00:00	425:57	BH6	Pumping well	55.73	47.77		2.25	8.1	H2S	
29/07/22 20:00:00	437:57	BH6	Pumping well	55.74	47.78		2.25	8.1	H2S	
30/07/22 08:00:00	449:57 461:57	BH6 BH6	Pumping well	55.79 55.85	47.83		2.25	8.1	H2S H2S	
31/07/22 08:00:00	473:57	BH6	Pumping well	55.87	47.91		2.23	8.2	H2S	
31/07/22 20:00:00	485:57	BH6	Pumping well	55.65	47.69		2.22	8.0	H2S	
01/08/22 08:00:00	497:57	BH6	Pumping well	55.74	47.78		2.22	8.0	H2S	
01/08/22 20:00:00	509:57 521:57	BH6 BH6	Pumping well	55.77 55.72	47.81		2.33	8.4 8.3	H2S H2S	
02/08/22 20:00:00	533:57	BH6	Pumping well	55.68	47.72		2.33	8.4	H2S	
03/08/22 08:00:00	545:57	BH6	Pumping well	55.70	47.74					Pumping stopped
03/08/22 11:00:00	548:57	BH6	Pumping well	22.76	14.80					
03/08/22 14:00:00	551:57 554:57	BH6	Pumping well	24.09	16.13					
03/08/22 20:00:00	557:57	BH6	Pumping well	14.99	7.03					
04/08/22 08:00:00	569:57	BH6	Pumping well	12.42	4.46					
04/08/22 11:00:00	572:57	BH6	Pumping well	12.02	4.06					
04/08/22 14:00:00	575:57	BH6	Pumping well	11.67	3.71					
04/08/22 17:00:00	5/8:57	вне Вне	Pumping well	11.42	3.40					

Date & Time Monitoring point				vvater	ievei, y	ieia, & w	ennea	t Comments		
				Water levels	е́	(۴	Flow R	ate	Odour	
			Point status	evels) uw	NU (L	â	3/h)		
24hr (dav-month-year	Flansed time		(pumping or	TOC	opw	idua vdov	v (l/s	ш) х		
hour:minute:second)	(Hours:Minutes)	ID	observation)	(mb)	Drav	Res drav	Flov	Flov		
05/08/22 08:00:00	593:57	BH6	Pumping well	10.47	2.51					
05/08/22 11:00:00	596:57	BH6	Pumping well	10.37	2.41					
05/08/22 14:00:00	599:57	BH6	Pumping well	10.21	2.25					
05/08/22 15:00:00	600:57	BH6	Pumping well	10.10	2.14			0.0	1126	Statia water level. Dre numning 8 pro
11/07/22 13:40:00	00.00	BH7	Pumping well	2.75	0.00		11	4.0	H2S	PLIMP ON
11/07/22 14:04:00	00:01	BH7	Pumping well	6.00	4.23			0.0	H2S	
11/07/22 14:05:00	00:02	BH7	Pumping well	7.80	6.03			0.0	H2S	
11/07/22 14:06:00	00:03	BH7	Pumping well	8.54	6.77			0.0	H2S	
11/07/22 14:07:00	00:04	BH7	Pumping well	9.87	8.10			0.0	H2S	
11/07/22 14:08:00	00:05	BH7	Pumping well	10.87	9.10			0.0	H2S H2S	
11/07/22 14:09:00	00.00	BH7	Pumping well	13.40	11.63			0.0	H2S	
11/07/22 14:11:00	00:08	BH7	Pumping well	14.36	12.59			0.0	H2S	
11/07/22 14:12:00	00:09	BH7	Pumping well	15.62	13.85			0.0	H2S	
11/07/22 14:13:00	00:10	BH7	Pumping well	16.54	14.77			0.0	H2S	
11/07/22 14:14:00	00:11	BH7	Pumping well	17.60	15.83			0.0	H2S	
11/07/22 14:15:00	00:12	BH7	Pumping well	18.60	16.83		1.1	0.0	H2S	
11/07/22 14:16:00	00.13	BH7	Pumping well	20.62	18.85		1.1	4.0	H2S	
11/07/22 14:17:00	00:15	BH7	Pumping well	21.56	19.79			0.0	H2S	
11/07/22 14:19:00	00:16	BH7	Pumping well	22.51	20.74			0.0	H2S	
11/07/22 14:20:00	00:17	BH7	Pumping well	23.42	21.65			0.0	H2S	
11/07/22 14:21:00	00:18	BH7	Pumping well	24.44	22.67			0.0	H2S	
11/07/22 14:22:00	00:19	BH7	Pumping well	25.23	23.46			0.0	H2S	
11/07/22 14:23:00	00:20	BH7	Pumping well	26.14	24.37			0.0	H2S H2S	
11/07/22 14:24:00	00:21	BH7	Pumping well	27.10	26.13		11	4.0	H2S	
11/07/22 14:45:00	00:42	BH7	Pumping well	40.31	38.54			0.0	H2S	
11/07/22 14:55:00	00:52	BH7	Pumping well	47.70	45.93		0.9	3.2	H2S	
11/07/22 15:05:00	01:02	BH7	Pumping well	51.54	49.77		0.75	2.7	H2S	
11/07/22 15:15:00	01:12	BH7	Pumping well	52.82	51.05		0.6	2.2	H2S	
11/07/22 15:30:00	01:27	BH7	Pumping well	38 75	36.98		0.52	1.9	H25 H2S	
11/07/22 16:15:00	02:12	BH7	Pumping well	52.33	50.56		0.02	0.0	H2S	
11/07/22 17:15:00	03:12	BH7	Pumping well	53.67	51.90		0.52	1.9	H2S	
11/07/22 17:45:00	03:42	BH7	Pumping well	54.51	52.74		0.52	1.9	H2S	
11/07/22 22:30:00	08:27	BH7	Pumping well	53.39	51.62		0.5	1.8	H2S	
12/07/22 09:10:00	19:07	BH7	Pumping well	53.33	51.56		0.37	1.3	H2S	
12/07/22 10:10:00	20:07		Pumping well	73.35	73.04		0.83	3.0	H25 H2S	Flow meter removed as it was restricting flow
12/07/22 12:00:00	22:12	BH7	Pumping well	73.40	71.63		0.5	1.8	H2S	
12/07/22 12:30:00	22:27	BH7	Pumping well	73.44	71.67		0.5	1.8	H2S	
12/07/22 12:45:00	22:42	BH7	Pumping well	73.48	71.71		0.5	1.8	H2S	
12/07/22 13:00:00	22:57	BH7	Pumping well	70.68	68.91		0.42	1.5	H2S	
12/07/22 13:20:00	23:17	BH7	Pumping well	69.30	67.53		0.42	1.5	H2S	
12/07/22 15:00:00	24.57	BH7	Pumping well	66 60	64.30		0.42	1.5	H2S	
12/07/22 20:00:00	29:57	BH7	Pumping well	66.96	65.19		0.44	1.6	H2S	
13/07/22 08:00:00	41:57	BH7	Pumping well	68.70	66.93		0.44	1.6	H2S	
13/07/22 11:00:00	44:57	BH7	Pumping well	68.78	67.01		0.44	1.6	H2S	
13/07/22 14:00:00	47:57	BH7	Pumping well	68.61	66.84		0.44	1.6	H2S	
13/07/22 17:00:00	50:57 53:57	BH7	Pumping well	68.00	67.08		0.44	1.0	H25	
14/07/22 08:00:00	65:57	BH7	Pumping well	69.82	68.05		0.44	1.6	H2S	
14/07/22 11:00:00	68:57	BH7	Pumping well	69.92	68.15		0.44	1.6	H2S	
14/07/22 14:00:00	71:57	BH7	Pumping well	70.20	68.43		0.44	1.6	H2S	
14/07/22 17:00:00	74:57	BH7	Pumping well	70.31	68.54		0.44	1.6	H2S	
14/07/22 20:00:00	77:57	BH7	Pumping well	70.43	68.66		0.44	1.6	H2S	
15/07/22 08:00:00	89:57		Pumping well	71.28	69.51		0.43	1.6	H2S H2S	
15/07/22 14:00:00	95:57	BH7	Pumping well	71.53	69 75		0.43	1.6	H2S	
15/07/22 17:00:00	98:57	BH7	Pumping well	71.83	70.06		0.44	1.6	H2S	
15/07/22 20:00:00	101:57	BH7	Pumping well	71.83	70.06		0.43	1.6	H2S	
16/07/22 08:00:00	113:57	BH7	Pumping well	71.98	70.21		0.43	1.6	H2S	

Date & Time

							Flow Do	4-	0.1	
				Water levels			Flow Ra	te	Odour	
				(0	Ê.	Ê				
24br			Point status	evels C)) uwo	al wn ((s	n ³ /h)		
(day-month-year	Elapsed time		(pumping or	bTO	awdo	sidu awdo	V) >>	ц) М		
hour:minute:second)	(Hours:Minutes)		observation)	<u>≚ E</u>	<u> </u>	<u> </u>	Ĕ 0.42	Е 16	Luce	
16/07/22 11:00:00	116:57	BH7 BH7	Pumping well Pumping well	71.91	70.14		0.43	1.6	H2S H2S	
16/07/22 17:00:00	122:57	BH7	Pumping well	72.25	70.48		0.43	1.6	H2S	
16/07/22 20:00:00	125:57	BH7	Pumping well	72.29	70.52		0.43	1.6	H2S	
17/07/22 08:00:00	137:57	BH7 BH7	Pumping well	71.61	69.84 69.95		0.43	1.6	H2S H2S	
17/07/22 14:00:00	143:57	BH7	Pumping well	71.94	70.17		0.43	1.6	H2S	
17/07/22 17:00:00	146:57	BH7	Pumping well	71.98	70.21		0.43	1.6	H2S	
17/07/22 20:00:00 18/07/22 08:00:00	149:57 161:57	BH7 BH7	Pumping well	71.93	70.16		0.43	1.5 1.5	H2S H2S	
18/07/22 11:00:00	164:57	BH7	Pumping well	71.60	69.83		0.43	1.6	H2S	
18/07/22 14:00:00	167:57	BH7	Pumping well	72.07	70.30		0.43	1.5	H2S	
18/07/22 17:00:00	170:57	BH7	Pumping well	71.90	70.13		0.43	1.6	H2S	
19/07/22 08:00:00	185:57	BH7	Pumping well	71.12	69.35		0.43	1.5	H2S	
19/07/22 11:00:00	188:57	BH7	Pumping well	70.90	69.13		0.43	1.5	H2S	
19/07/22 14:00:00	191:57	BH7	Pumping well	71.11	69.34		0.43	1.5	H2S	
19/07/22 17:00:00	194:57	BH7 BH7	Pumping well Pumping well	71.14	69.37 69.55		0.43	1.5	H2S	
20/07/22 08:00:00	209:57	BH7	Pumping well	71.04	69.27		0.43	1.5	H2S	
20/07/22 11:00:00	212:57	BH7	Pumping well	71.25	69.48		0.43	1.5	H2S	
20/07/22 14:00:00	215:57 218:57	BH7 BH7	Pumping well	71.20	69.43 69.73		0.43	1.5	H2S H2S	
20/07/22 20:00:00	221:57	BH7	Pumping well	71.06	69.29		0.42	1.5	H2S	
21/07/22 08:00:00	233:57	BH7	Pumping well	71.23	69.46		0.43	1.5	H2S	
21/07/22 11:00:00	236:57	BH7	Pumping well	71.22	69.45 69.41		0.43	1.5	H2S H2S	
21/07/22 17:00:00	242:57	BH7	Pumping well	71.08	69.31		0.42	1.5	H2S	
21/07/22 20:00:00	245:57	BH7	Pumping well	70.92	69.15		0.43	1.5	H2S	
22/07/22 08:00:00	257:57	BH7	Pumping well	70.97	69.20		0.43	1.5	H2S	
22/07/22 11:00:00	260:57	BH7 BH7	Pumping well Pumping well	70.93	69.16 69.15		0.43	1.5	H2S	
22/07/22 17:00:00	266:57	BH7	Pumping well	70.93	69.16		0.42	1.5	H2S	
22/07/22 20:00:00	269:57	BH7	Pumping well	70.53	68.76		0.43	1.5	H2S	
23/07/22 08:00:00	281:57 284:57	BH7	Pumping well	70.43	68.66		0.42	1.5 1.5	H2S H2S	
23/07/22 14:00:00	287:57	BH7	Pumping well	69.99	68.22		0.42	1.6	H2S	
23/07/22 17:00:00	290:57	BH7	Pumping well	69.58	67.81		0.42	1.5	H2S	
23/07/22 20:00:00	293:57	BH7 BH7	Pumping well	69.52	67.75 67.21		0.43	1.5	H2S H2S	
24/07/22 11:00:00	308:57	BH7	Pumping well	68.78	67.01		0.42	1.5	H2S	
24/07/22 14:00:00	311:57	BH7	Pumping well	68.41	66.64		0.41	1.5	H2S	
24/07/22 17:00:00	314:57	BH7	Pumping well	68.10	66.33		0.41	1.5	H2S	
25/07/22 08:00:00	329:57	BH7	Pumping well Pumping well	65.92	64.15		0.40	1.4	H2S	
25/07/22 20:00:00	341:57	BH7	Pumping well	64.88	63.11		0.39	1.4	H2S	
26/07/22 08:00:00	353:57	BH7	Pumping well	63.73	61.96		0.38	1.4	H2S	
26/07/22 20:00:00 27/07/22 08:00:00	365:57 377:57	BH7 BH7	Pumping well	62.88 61.30	61.11 59.53		0.38	1.4 1.7	H2S H2S	
27/07/22 20:00:00	389:57	BH7	Pumping well	76.44	74.67		0.45	1.6	H2S	
28/07/22 08:00:00	401:57	BH7	Pumping well	76.17	74.40		0.45	1.6	H2S	
28/07/22 20:00:00	413:57	BH7 BH7	Pumping well	75.50	73.73		0.45	1.6	H2S H2S	
29/07/22 20:00:00	437:57	BH7	Pumping well	74.97	73.20		0.43	1.6	H2S	
30/07/22 08:00:00	449:57	BH7	Pumping well	73.90	72.13		0.44	1.6	H2S	
30/07/22 20:00:00	461:57	BH7	Pumping well	72.92	71.15		0.44	1.6	H2S	
31/07/22 20:00:00	485:57	BH7	Pumping well	72.94	71.17		0.44	1.6	H2S	
01/08/22 08:00:00	497:57	BH7	Pumping well	72.96	71.19		0.44	1.6	H2S	
01/08/22 20:00:00	509:57	BH7	Pumping well	73.36	71.59		0.44	1.6	H2S	
02/08/22 08:00:00	521:57 533:57	BH7	Pumping well	72.96	71.19 69.98		0.44	1.0	H2S H2S	
03/08/22 08:00:00	545:57	BH7	Pumping well	71.67	69.90					Pumping stopped
03/08/22 11:00:00	548:57	BH7	Pumping well	18.97	17.20					
03/08/22 1/100.00	1551.57	IRH7	Pumping well	113 01	111 2/				1	I I I I I I I I I I I I I I I I I I I

Date & Time		Monito	oring point	vvater	ievei, yi	ieid, & w	/elinea	Comments		
				Water levels			Flow R	ate	Odour	
24hr (day-month-year	Elapsed time		Point status (pumping or	tter levels oTOC)	(m) uwopwt	sidual wdown (m)	w (Vs)	w (m ³ /h)		
hour:minute:second)	(Hours:Minutes)	ID	observation)	Wa (mt	Dra	dra	Ê	Ê	-	
03/08/22 17:00:00	554:57	BH7	Pumping well	11.01	9.24		-			
03/08/22 20:00:00	557:57		Pumping well	9.90	8.13					
04/08/22 08:00:00	572:57	BH7	Pumping well	7.05	0.00 5.67					
04/08/22 14:00:00	575:57	BH7	Pumping well	5.98	4.21					
04/08/22 17:00:00	578:57	BH7	Pumping well	5.70	3.93					
04/08/22 20:00:00	581:57	BH7	Pumping well	5.50	3.73					
05/08/22 08:00:00	593:57	BH7	Pumping well	4.64	2.87					
05/08/22 11:00:00	596:57	BH7	Pumping well	4.54	2.77			_		
05/08/22 14:00:00	599:57	BH/	Pumping well	4.37	2.60		-	-		
11/07/22 13:00:00	00.07	BH1	Observation	7.38	2.49					Static water level Pre-pumping
11/07/22 16:00:00	03:00	BH1	Observation	7.37	-0.01					
12/07/22 08:00:00	17:57	BH1	Observation	7.40	0.02					
12/07/22 11:00:00	20:57	BH1	Observation	7.41	0.03					
12/07/22 14:00:00	23:57	BH1	Observation	7.42	0.04					
12/07/22 17:00:00	26:57	BH1	Observation	7.44	0.06					
12/07/22 20:00:00	29:57	BH1	Observation	7.44	0.06		-			
13/07/22 08:00:00	41:57		Observation	7.47	0.09					
13/07/22 11:00:00	44.57	BH1	Observation	7.40	0.10					
13/07/22 17:00:00	50:57	BH1	Observation	7.48	0.10					
13/07/22 20:00:00	53:57	BH1	Observation	7.47	0.09					
14/07/22 08:00:00	65:57	BH1	Observation	7.51	0.13					
14/07/22 11:00:00	68:57	BH1	Observation	7.51	0.13					
14/07/22 14:00:00	71:57	BH1	Observation	7.52	0.14		_			
14/07/22 17:00:00	74:57	BH1	Observation	7.52	0.14					
14/07/22 20:00:00	//:5/	BH1	Observation	7.51	0.13		-			
15/07/22 11:00:00	92:57	BH1	Observation	7.54	0.15					
15/07/22 14:00:00	95:57	BH1	Observation	7.56	0.18					
15/07/22 17:00:00	98:57	BH1	Observation	7.57	0.19					
15/07/22 20:00:00	101:57	BH1	Observation	7.59	0.21					
16/07/22 08:00:00	113:57	BH1	Observation	7.66	0.28					
16/07/22 11:00:00	116:57	BH1	Observation	7.67	0.29					
16/07/22 14:00:00	119:57	BH1	Observation	7.69	0.31		-			
16/07/22 17:00:00	122.57	BH1	Observation	7 74	0.35					
17/07/22 08:00:00	137:57	BH1	Observation	7.84	0.46					
17/07/22 11:00:00	140:57	BH1	Observation	7.84	0.46					
17/07/22 14:00:00	143:57	BH1	Observation	7.86	0.48					
17/07/22 17:00:00	146:57	BH1	Observation	7.86	0.48		_			
17/07/22 20:00:00	149:57	BH1	Observation	7.88	0.50		-	_		
18/07/22 08:00:00	161:57	BH1	Observation	7.99	0.61		-			
18/07/22 11:00:00	164.57	BH1	Observation	8.20	0.62					
18/07/22 17:00:00	170:57	BH1	Observation	8.40	1.02					
18/07/22 20:00:00	173:57	BH1	Observation	8.06	0.68					
19/07/22 08:00:00	185:57	BH1	Observation	8.10	0.72					
19/07/22 11:00:00	188:57	BH1	Observation	8.13	0.75					
19/07/22 14:00:00	191:57	BH1	Observation	8.16	0.78		-			
19/07/22 17:00:00	194:57	BH1	Observation	8.18	0.80		-			
20/07/22 08:00:00	209:57	BH1	Observation	8.36	0.83					
20/07/22 11:00:00	212:57	BH1	Observation	8.39	1.01				1	
20/07/22 14:00:00	215:57	BH1	Observation	8.42	1.04					
20/07/22 17:00:00	218:57	BH1	Observation	8.44	1.06					
20/07/22 20:00:00	221:57	BH1	Observation	8.48	1.10					
21/07/22 08:00:00	233:57	BH1	Observation	8.57	1.19					
21/07/22 11:00:00	236:57	BH1	Observation	8.59	1.21					
21/07/22 14:00:00	239:57	BH1	Observation	0.00	1.22					
21/07/22 20:00:00	245:57	BH1	Observation	8.64	1.24			+	+	
22/07/22 08:00:00	257:57	BH1	Observation	8.69	1.31			1		
22/07/22 11:00:00	260:57	BH1	Observation	8.70	1.32					

Date & Time		Monit	oring point	Water	level, y	ield, & v	wellhea	Comments		
				Water levels	~		Flow R	ate	Odour	
24hr (day-month-year bour:minute:recond)	Elapsed time	п	Point status (pumping or	/ater levels nbTOC)	ırawdown (m	tesidual rawdown (m)	low (Vs)	low (m ³ /h)		
22/07/22 14:00:00	263:57	BH1	Observation	8.70	1.32		L			
22/07/22 17:00:00	266:57	BH1	Observation	8.92	1.54					
22/07/22 20:00:00	269:57	BH1	Observation	8.72	1.34					
23/07/22 08:00:00	281:57	BH1	Observation	8.73	1.35					
23/07/22 14:00:00	287:57	BH1	Observation	8.72	1.34			-		
23/07/22 17:00:00	290:57	BH1	Observation	8.72	1.34					
23/07/22 20:00:00	293:57	BH1	Observation	8.73	1.35					
24/07/22 08:00:00	305:57	BH1	Observation	8.73	1.35					
24/07/22 11:00:00	311:57	BH1	Observation	8.72	1.34					
24/07/22 17:00:00	314:57	BH1	Observation	8.73	1.35					
24/07/22 20:00:00	317:57	BH1	Observation	8.73	1.35					
25/07/22 08:00:00	329:57	BH1	Observation	8.80	1.42					
26/07/22 20:00:00	341.57	BH1	Observation	8.98	1.52					
26/07/22 20:00:00	365:57	BH1	Observation	9.05	1.67					
27/07/22 08:00:00	377:57	BH1	Observation	9.08	1.70					
27/07/22 20:00:00	389:57	BH1	Observation	9.11	1.73					
28/07/22 08:00:00	401:57	BH1 BH1	Observation	9.12	1.74					
29/07/22 08:00:00	425:57	BH1	Observation	9.18	1.80					
29/07/22 20:00:00	437:57	BH1	Observation	9.20	1.82					
30/07/22 08:00:00	449:57	BH1	Observation	9.24	1.86					
30/07/22 20:00:00	461:57	BH1	Observation	9.28	1.90					
31/07/22 20:00:00	485:57	BH1	Observation	9.33	2.00			+		
01/08/22 08:00:00	497:57	BH1	Observation	9.42	2.04					
01/08/22 20:00:00	509:57	BH1	Observation	9.42	2.04					
02/08/22 08:00:00	521:57	BH1	Observation	9.43	2.05					
02/08/22 20:00:00	545:57	BH1	Observation	9.47	2.09					Pumping stopped
03/08/22 11:00:00	548:57	BH1	Observation	9.52	2.14					<u> </u>
03/08/22 14:00:00	551:57	BH1	Observation	9.53	2.15					
03/08/22 17:00:00	554:57	BH1	Observation	9.55	2.17			_		
03/08/22 20:00:00	569.57	BH1	Observation	9.57	1.91					
04/08/22 11:00:00	572:57	BH1	Observation	9.25	1.87					
04/08/22 14:00:00	575:57	BH1	Observation	9.67	2.29					
04/08/22 17:00:00	578:57	BH1	Observation	9.45	2.07					
04/08/22 20:00:00	581:57	BH1 BH1	Observation	9.65	2.27			+	_	
05/08/22 11:00:00	596:57	BH1	Observation	9.69	2.31					
05/08/22 14:00:00	599:57	BH1	Observation	9.59	2.21					
05/08/22 15:00:00	600:57	BH1	Observation	9.69	2.31					
11/07/22 13:00:00	00:00	BH2 BH2	Observation	7.20	0.00			+	_	Static water level. Pre-pumping
12/07/22 08:00:00	17:57	BH2	Observation	7.30	0.10					
12/07/22 11:00:00	20:57	BH2	Observation	7.35	0.15					
12/07/22 14:00:00	23:57	BH2	Observation	7.40	0.20			-		
12/07/22 17:00:00	26:57 29:57	BH2 BH2	Observation	7.45	0.25			+	_	
13/07/22 08:00:00	41:57	BH2	Observation	7.56	0.36					
13/07/22 11:00:00	44:57	BH2	Observation	7.60	0.40					
13/07/22 14:00:00	47:57	BH2	Observation	7.62	0.42					
13/07/22 17:00:00	50:57 53:57	BH2	Observation	7.65	0.45					
14/07/22 08:00:00	65:57	BH2	Observation	7.74	0.54					
14/07/22 11:00:00	68:57	BH2	Observation	7.75	0.55					
14/07/22 14:00:00	71:57	BH2	Observation	7.77	0.57					
14/07/22 17:00:00	74:57	BH2	Observation	7.79	0.59					
15/07/22 08:00:00	89:57	BH2	Observation	7.85	0.65			+		
15/07/22 11:00:00	92:57	BH2	Observation	7.84	0.64					
15/07/22 14:00:00	95:57	BH2	Observation	7.85	0.65					

Date & Time		Monitoring point		Water	level, y	ield, & v	vellhea	t Comments		
				Water levels			Flow R	ate	Odour	
				sle	(m) r	(E)		Ē		
24hr (day-month-year	Flansed time		Point status	er leve TOC)	мори	idual vdowr	v (l/s)	v (m ³ /h		
hour:minute:second)	(Hours:Minutes)	ID	observation)	Wat (mb ⁻	Drav	Res drav	Flow	Flow		
15/07/22 17:00:00	98:57	BH2	Observation	7.87	0.67				_	
15/07/22 20:00:00	101:57	BH2 BH2	Observation	7.88	0.68		-	-		
16/07/22 11:00:00	116:57	BH2	Observation	7.92	0.72					
16/07/22 14:00:00	119:57	BH2	Observation	7.94	0.74					
16/07/22 17:00:00	122:57	BH2	Observation	7.96	0.76					
16/07/22 20:00:00	125:57	BH2	Observation	7.98	0.78					
17/07/22 08:00:00	140:57	BH2	Observation	8.04	0.82			-		
17/07/22 14:00:00	143:57	BH2	Observation	8.05	0.85					
17/07/22 17:00:00	146:57	BH2	Observation	8.06	0.86					
17/07/22 20:00:00	149:57	BH2	Observation	8.09	0.89		-		_	
18/07/22 08:00:00	161:57	BH2	Observation	8.14	0.94		-			
18/07/22 14:00:00	167:57	BH2	Observation	8 18	0.95					
18/07/22 17:00:00	170:57	BH2	Observation	8.17	0.97					
18/07/22 20:00:00	173:57	BH2	Observation	8.19	0.99					
19/07/22 08:00:00	185:57	BH2	Observation	8.24	1.04		_			
19/07/22 11:00:00	188:57	BH2	Observation	8.26	1.06		-		_	
19/07/22 14:00:00	191.57	BH2	Observation	8.28	1.07					
19/07/22 20:00:00	197:57	BH2	Observation	8.30	1.10					
20/07/22 08:00:00	209:57	BH2	Observation	8.38	1.18					
20/07/22 11:00:00	212:57	BH2	Observation	8.41	1.21					
20/07/22 14:00:00	215:57	BH2	Observation	8.43	1.23		-			
20/07/22 17:00:00	218:57	BH2	Observation	8.44	1.24		-			
21/07/22 08:00:00	233:57	BH2	Observation	8.55	1.35					
21/07/22 11:00:00	236:57	BH2	Observation	8.57	1.37					
21/07/22 14:00:00	239:57	BH2	Observation	8.59	1.39					
21/07/22 17:00:00	242:57	BH2	Observation	8.60	1.40					
21/07/22 20:00:00	245:57	BH2	Observation	8.62	1.42					
22/07/22 11:00:00	260:57	BH2	Observation	8.69	1.49					
22/07/22 14:00:00	263:57	BH2	Observation	8.65	1.45					
22/07/22 17:00:00	266:57	BH2	Observation	8.79	1.59					
22/07/22 20:00:00	269:57	BH2	Observation	8.69	1.49					
23/07/22 08:00:00	281:57	BH2 BH2	Observation	8.72	1.52		-			
23/07/22 14:00:00	287:57	BH2	Observation	8.73	1.53					
23/07/22 17:00:00	290:57	BH2	Observation	8.74	1.54					
23/07/22 20:00:00	293:57	BH2	Observation	8.74	1.54					
24/07/22 08:00:00	305:57	BH2	Observation	8.76	1.56					
24/07/22 11:00:00	308:57	BH2	Observation	8.76	1.50					
24/07/22 17:00:00	314:57	BH2	Observation	8.78	1.58	+	-			
24/07/22 20:00:00	317:57	BH2	Observation	8.78	1.58					
25/07/22 08:00:00	329:57	BH2	Observation	8.84	1.64					
25/07/22 20:00:00	341:57	BH2	Observation	8.92	1.72		-			
26/07/22 08:00:00	353:57	BH2	Observation	8.97	1.//					
27/07/22 08:00:00	377:57	BH2	Observation	9.02	1.86					
27/07/22 20:00:00	389:57	BH2	Observation	9.09	1.89			1		
28/07/22 08:00:00	401:57	BH2	Observation	9.14	1.94					
28/07/22 20:00:00	413:57	BH2	Observation	9.14	1.94					
29/07/22 08:00:00	425:57	BH2	Observation	9.17	1.97					
30/07/22 08:00:00	437.57	BH2	Observation	9.20	2.00				+	
30/07/22 20:00:00	461:57	BH2	Observation	9.26	2.06			1		
31/07/22 08:00:00	473:57	BH2	Observation	9.30	2.10					
31/07/22 20:00:00	485:57	BH2	Observation	9.34	2.14					
01/08/22 08:00:00	497:57	BH2	Observation	9.36	2.16					
02/08/22 08:00:00	509.57	BH2	Observation	9.37	2.17			+	+	
02/08/22 20:00:00	533:57	BH2	Observation	9.40	2.20				1	
		-								

Z4hr (day-month-year hour:minute:second) Elapsed time (Hours:Minutes) Point status ID Sign (pumping or observation) Pumping stopped 04/08/22 11:00:00 557:57 BH2 Observation 9.54 2.34 Image: Cose observation Sign (pumping or observation) Sign (pumping or observation) Sign (pumping or observation)	
24hr Point status	
Instructe:second) (Hours:Minutes) ID observation) ID observation ID observation ID observation ID observation ID ID ID observation ID ID ID observation ID ID observation ID <	
03/08/22 08:00:00 545:57 BH2 Observation 9.44 2.24 Pumping stopped 03/08/22 11:00:00 548:57 BH2 Observation 9.43 2.23 Image: Constraint of the co	
03/08/22 11:00:00 548:57 BH2 Observation 9.43 2.23 Image: Constraint of the second s	
Observation Observation 9.46 2.26 03/08/22 17:00:00 554:57 BH2 Observation 9.46 2.26 03/08/22 17:00:00 557:57 BH2 Observation 9.50 2.30 04/08/22 08:00:00 569:57 BH2 Observation 9.53 2.33 04/08/22 11:00:00 572:57 BH2 Observation 9.54 2.34 04/08/22 11:00:00 575:57 BH2 Observation 9.54 2.34 04/08/22 17:00:00 575:57 BH2 Observation 9.54 2.34 04/08/22 17:00:00 578:57 BH2 Observation 9.55 2.35 04/08/22 20:00:00 593:57 BH2 Observation 9.60 2.40 05/08/22 18:00:00 593:57 BH2 Observation 9.58 2.38 05/08/22 14:00:00 599:57 BH2 Observation 9.68	
03/08/22 0:0:00 557:57 BH2 Observation 9:50 2:30 Image: Constraint of the constraint o	
04/08/22 08:00:00 569:57 BH2 Observation 9.53 2.33 Image: Constraint of the state of the	
04/08/22 11:00:00 572:57 BH2 Observation 9.54 2.34 Image: Constraint of the servation	
04/08/22 17:00:00 573:07 BH2 Observation 9.54 2.34 1 04/08/22 17:00:00 578:57 BH2 Observation 9.64 2.44 1 04/08/22 20:00:00 581:57 BH2 Observation 9.55 2.35 1 05/08/22 08:00:00 593:57 BH2 Observation 9.60 2.40 1 05/08/22 11:00:00 596:57 BH2 Observation 9.58 2.38 1 05/08/22 14:00:00 599:57 BH2 Observation 9.68 2.48 1 05/08/22 15:00:00 600:57 BH2 Observation 9.60 2.40 1 11/07/22 13:00:00 00:00 BH5 Observation 9.60 2.40 1	
04/08/22 20:00:00 581:57 BH2 Observation 9.55 2.35 Image: Constraint of the servation 9.60 2.40 Image: Constraint of the servation 9.68 2.48 Image: Constraint of the servation 9.60 2.40 Image: Constraint of the servation	
05/08/22 08:00:00 593:57 BH2 Observation 9.60 2.40 Image: Constraint of the state of the	
05/08/22 11:00:00 596:57 BH2 Observation 9.58 2.38 Image: Constraint of the second seco	
05/06/22 14:00:00 599:37 BH2 Observation 9:60 2:40 Image: Constraint of the second seco	
11/07/22 13:00:00 00:00 BH5 Observation 1.81 0.00 Static water level Pre-number	
	ng
11/07/22 16:00:00 03:00 BH5 Observation 1.81 0.00	
12/07/22 08:00:00 17:57 BH5 Observation 1.76 -0.05	
12/07/22 11:00:00 20:57 BH5 Observation 1.75 -0.06	
12/07/22 17:00:00 26:57 BH5 Observation 1.83 0.02	
12/07/22 20:00:00 29:57 BH5 Observation 1.76 -0.05	
13/07/22 08:00:00 41:57 BH5 Observation 1.81 0.00	
13/07/22 11:00:00 44:57 BH5 Observation 1.80 -0.01	
13/07/22 14:00:00 47:57 BH5 Observation 1.83 0.02	
13/07/22 20:00:00 53:57 BH5 Observation 1.86 0.05	
14/07/22 08:00:00 65:57 BH5 Observation 1.89 0.08 Contract of the second	
14/07/22 11:00:00 68:57 BH5 Observation 1.86 0.05	
14/07/22 14:00:00 71:57 BH5 Observation 1.87 0.06	
14/07/22 20:00:00 77:57 BH5 Observation 1.95 0.14	
15/07/22 08:00:00 89:57 BH5 Observation 1.95 0.14	
15/07/22 11:00:00 92:57 BH5 Observation 1.93 0.12	
15/07/22 14:00:00 95:57 BH5 Observation 1.92 0.11	
15/07/22 20:00:00 101:57 BH5 Observation 2.00 0.19	
16/07/22 08:00:00 113:57 BH5 Observation 2.03 0.22	
16/07/22 11:00:00 116:57 BH5 Observation 2.02 0.21 0.21	
16/07/22 14:00:00 119:57 BH5 Observation 1.99 0.18	
16/07/22 17:00:00 122:57 BH5 Observation 2.04 0.23	
17/07/22 08:00:00 137:57 BH5 Observation 2.09 0.28	
17/07/22 11:00:00 140:57 BH5 Observation 2.11 0.30	
17/07/22 14:00:00 143:57 BH5 Observation 2.06 0.25	
17/07/22 17:00:00 146:57 BH5 Observation 2.08 0.27	
18/07/22 08:00:00 161:57 BH5 Observation 2.16 0.35	
18/07/22 11:00:00 164:57 BH5 Observation 2.19 0.38	
18/07/22 14:00:00 167:57 BH5 Observation 2.14 0.33	
18/07/22 17:00:00 170:57 BH5 Observation 2.15 0.34	
18/07/22 20:00:00 173:57 BH5 Observation 2.21 0.40	
19/07/22 11:00:00 188:57 BH5 Observation 2.27 0.46	
19/07/22 14:00:00 191:57 BH5 Observation 2.24 0.43	
19/07/22 17:00:00 194:57 BH5 Observation 2.22 0.41	
19/0//22 20:00:00 19/:57 BH5 Observation 2.26 0.45	
20/07/22 18:00:00 219:57 BH5 Observation 2.31 0.50	
20/07/22 14:00:00 215:57 BH5 Observation 2.36 0.55	
20/07/22 17:00:00 218:57 BH5 Observation 2.33 0.52	
20/07/22 20:00:00 221:57 BH5 Observation 2.33 0.52	
21/07/22 08:00:00 233:57 BH5 Observation 2.41 0.60	
21/07/22 14:00:00 239:57 BH5 Observation 2.45 0.64	
21/07/22 17:00:00 242:57 BH5 Observation 2.41 0.60	

Date & Time		Monito	oring point	Water	level, y	ield, & \	wellhea	Comments		
				Water levels			Flow F	Rate	Odour	
24hr (day-month-year bour:minute:recond)	Elapsed time	П	Point status (pumping or	Vater levels nbTOC)	rawdown (m	tesidual rawdown (m)	low (Vs)	low (m³/h)		
21/07/22 20:00:00	245:57	BH5	Observation	2.42	0.61					
22/07/22 08:00:00	257:57	BH5	Observation	2.47	0.66					
22/07/22 11:00:00	260:57	BH5	Observation	2.51	0.70		_			
22/07/22 14:00:00	263:57	BH5	Observation	2.53	0.72		_			
22/07/22 17:00:00	269:57	BH5	Observation	2.30	0.65					
23/07/22 08:00:00	281:57	BH5	Observation	2.53	0.72					
23/07/22 11:00:00	284:57	BH5	Observation	2.55	0.74					
23/07/22 14:00:00	287:57	BH5	Observation	2.57	0.76					
23/07/22 17:00:00	290:57	BH5	Observation	2.55	0.74		-	_		
23/07/22 20:00:00	293.37		Observation	2.50	0.09		-			
24/07/22 08.00.00	308:57	BH5	Observation	2.50	0.75		_			
24/07/22 14:00:00	311:57	BH5	Observation	2.61	0.80					
24/07/22 17:00:00	314:57	BH5	Observation	2.61	0.80					
24/07/22 20:00:00	317:57	BH5	Observation	2.58	0.77					
25/07/22 08:00:00	329:57	BH5	Observation	2.64	0.83					
26/07/22 20:00:00	341:57	BH5	Observation	2.09	0.88					
26/07/22 20:00:00	365:57	BH5	Observation	2.77	0.96					
27/07/22 08:00:00	377:57	BH5	Observation	2.81	1.00					
27/07/22 20:00:00	389:57	BH5	Observation	2.84	1.03					
28/07/22 08:00:00	401:57	BH5	Observation	2.84	1.03					
28/07/22 20:00:00	413:57	BH5	Observation	2.88	1.07	_	_			
29/07/22 08:00:00	425:57	BH5	Observation	2.90	1.09			_		
30/07/22 08:00:00	449:57	BH5	Observation	2.90	1.15					
30/07/22 20:00:00	461.57	BH5	Observation	2.99	1 18			_		
31/07/22 08:00:00	473:57	BH5	Observation	2.98	1.17					
31/07/22 20:00:00	485:57	BH5	Observation	3.05	1.24					
01/08/22 08:00:00	497:57	BH5	Observation	3.04	1.23					
01/08/22 20:00:00	509:57	BH5	Observation	3.01	1.20		_			
02/08/22 08:00:00	533:57	BH5	Observation	3.04	1.27					
03/08/22 08:00:00	545:57	BH5	Observation	3.10	1.29	1				Pumping stopped
03/08/22 11:00:00	548:57	BH5	Observation	3.11	1.30					
03/08/22 14:00:00	551:57	BH5	Observation	3.08	1.27					
03/08/22 17:00:00	554:57	BH5	Observation	3.07	1.26					
03/08/22 20:00:00	557:57	BH5	Observation	3.12	1.31		-			
04/08/22 08:00:00	572:57	BH5	Observation	3.15	1.34			_		
04/08/22 14:00:00	575:57	BH5	Observation	3.16	1.35					
04/08/22 17:00:00	578:57	BH5	Observation	3.10	1.29					
04/08/22 20:00:00	581:57	BH5	Observation	3.12	1.31					
05/08/22 08:00:00	593:57	BH5	Observation	3.18	1.37					
05/08/22 11:00:00	596:57	BH5	Observation	3.14	1.33		-	_		
05/08/22 14:00:00	599:57 600:57	BH5	Observation	3.12	1.31					
11/07/22 13:00:00	00:00	BH8	Observation	3.61	0.00					Static water level. Pre-pumping
11/07/22 16:00:00	03:00	BH8	Observation	3.62	0.01					
12/07/22 08:00:00	17:57	BH8	Observation	4.40	0.79					
12/07/22 11:00:00	20:57	BH8	Observation	4.64	1.03		_			
12/07/22 14:00:00	23:57	BH8	Observation	4.84	1.23	+		_		
12/07/22 20:00:00	29:57	BH8	Observation	5.20	1.59	+		-		
13/07/22 08:00:00	41:57	BH8	Observation	5.90	2.29					
13/07/22 11:00:00	44:57	BH8	Observation	6.03	2.42					
13/07/22 14:00:00	47:57	BH8	Observation	6.21	2.60					
13/07/22 17:00:00	53:57	BH8	Observation	6.35	2.74					
14/07/22 08:00:00	65:57	BH8	Observation	7.00	3.39					
14/07/22 11:00:00	68:57	BH8	Observation	7.09	3.48					
14/07/22 14:00:00	71:57	BH8	Observation	7.23	3.62					
14/07/22 17:00:00	74:57	BH8	Observation	7.37	3.76					

Date & Time		Monit	oring point	Water	level, y	ield, & v	vellhea	Comments		
				Water levels	~		Flow R	late	Odour	
24hr (day-month-year	Elapsed time	п	Point status (pumping or	/ater levels nbTOC)	rawdown (m	esidual rawdown (m)	low (l/s)	low (m ³ /h)		
14/07/22 20:00:00	77:57	BH8	Observation	7.45	3.84					
15/07/22 08:00:00	89:57	BH8	Observation	7.85	4.24					
15/07/22 11:00:00	92:57	BH8	Observation	7.92	4.31					
15/07/22 14:00:00	95:57	BH8	Observation	8.20	4.59		_			
15/07/22 20:00:00	101:57	BH8	Observation	8.22	4.61					
16/07/22 08:00:00	113:57	BH8	Observation	8.53	4.92					
16/07/22 11:00:00	116:57	BH8	Observation	8.58	4.97					
16/07/22 14:00:00	119:57	BH8	Observation	8.68	5.07		-			
16/07/22 20:00:00	125:57	BH8	Observation	8.83	5.22					
17/07/22 08:00:00	137:57	BH8	Observation	9.08	5.47					
17/07/22 11:00:00	140:57	BH8	Observation	9.13	5.52					
17/07/22 14:00:00	143:57	BH8	Observation	9.18	5.57		-			
17/07/22 17:00:00	149:57	BH8	Observation	9.20	5.65					
18/07/22 08:00:00	161:57	BH8	Observation	9.58	5.97					
18/07/22 11:00:00	164:57	BH8	Observation	9.60	5.99					
18/07/22 14:00:00	167:57	BH8	Observation	9.64	6.03					
18/07/22 17:00:00	170:57	BH8	Observation	9.68	6.07					
19/07/22 08:00:00	185:57	BH8	Observation	9.96	6.35					
19/07/22 11:00:00	188:57	BH8	Observation	10.00	6.39					
19/07/22 14:00:00	191:57	BH8	Observation	10.04	6.43					
19/07/22 17:00:00	194:57	BH8	Observation	10.08	6.47					
20/07/22 08:00:00	209:57	BH8	Observation	10.14	6.73					
20/07/22 11:00:00	212:57	BH8	Observation	10.40	6.79					
20/07/22 14:00:00	215:57	BH8	Observation	10.42	6.81					
20/07/22 17:00:00	218:57	BH8	Observation	10.46	6.85		-			
20/07/22 20:00:00	233:57	BH8	Observation	10.50	7.08					
21/07/22 11:00:00	236:57	BH8	Observation	10.73	7.12					
21/07/22 14:00:00	239:57	BH8	Observation	10.74	7.13					
21/07/22 17:00:00	242:57	BH8	Observation	10.77	7.16					
21/07/22 20:00:00	245:57	BH8	Observation	10.80	7.19				_	
22/07/22 11:00:00	260:57	BH8	Observation	10.97	7.36					
22/07/22 14:00:00	263:57	BH8	Observation	10.92	7.31					
22/07/22 17:00:00	266:57	BH8	Observation	10.99	7.38		_			
22/07/22 20:00:00	269:57	BH8	Observation	11.01	7.40					
23/07/22 11:00:00	284:57	BH8	Observation	11.10	7.53					
23/07/22 14:00:00	287:57	BH8	Observation	11.16	7.55					
23/07/22 17:00:00	290:57	BH8	Observation	11.18	7.57					
23/07/22 20:00:00	293:57	BH8	Observation	11.19	7.58					
24/07/22 11:00:00	308:57	BH8	Observation	11.34	7.73					
24/07/22 14:00:00	311:57	BH8	Observation	11.37	7.76					
24/07/22 17:00:00	314:57	BH8	Observation	11.38	7.77					
24/07/22 20:00:00	317:57	BH8	Observation	11.38	7.77		_			
25/07/22 20:00:00	341:57	BH8	Observation	11.64	8.03					
26/07/22 08:00:00	353:57	BH8	Observation	11.76	8.15					
26/07/22 20:00:00	365:57	BH8	Observation	11.83	8.22					
27/07/22 08:00:00	377:57	BH8	Observation	11.91	8.30					
28/07/22 08:00:00	401:57	BH8	Observation	12 04	0.30 8.43				+	
28/07/22 20:00:00	413:57	BH8	Observation	12.12	8.51					
29/07/22 08:00:00	425:57	BH8	Observation	12.20	8.59					
29/07/22 20:00:00	437:57	BH8	Observation	12.29	8.68					
30/07/22 08:00:00	449:57	BH8	Observation	12.35	8.74 8.82					
31/07/22 08:00:00	473:57	BH8	Observation	12.52	8.91					
31/07/22 20:00:00	485:57	BH8	Observation	12.58	8.97					

Date & Time		Monito	oring point	Water	level, yi	eld, & w	ellhea	Comments		
				Water levels			Flow Ra	ate	Odour	
24hr (day-month-year	Elapsed time		Point status (pumping or	ater levels bTOC)	awdown (m)	sidual awdown (m)	(s/l) w	w (m ³ /h)		
hour:minute:second)	(Hours:Minutes)	ID	observation)			dra	운	Ê	T	
01/08/22 08:00:00	497:57	BH8	Observation	12.63	9.02					
02/08/22 08:00:00	521:57	BH8	Observation	12.67	9.06					
02/08/22 20:00:00	533:57	BH8	Observation	12.72	9.11					
03/08/22 08:00:00	545:57	BH8	Observation	12.77	9.16					Pumping stopped
03/08/22 11:00:00	548:57	BH8	Observation	12.76	9.15		-			
03/08/22 14:00:00	551:57 554:57	BH8	Observation	12.73	9.12		-	-		
03/08/22 20:00:00	557:57	BH8	Observation	12.62	9.01					
04/08/22 08:00:00	569:57	BH8	Observation	12.17	8.56					
04/08/22 11:00:00	572:57	BH8	Observation	12.06	8.45					
04/08/22 14:00:00	575:57	BH8	Observation	11.92	8.31		_			
04/08/22 17:00:00	578:57 581:57	BH8	Observation	11.80	8.19					
05/08/22 08:00:00	593:57	BH8	Observation	11.13	7.52					
05/08/22 11:00:00	596:57	BH8	Observation	11.07	7.46					
05/08/22 14:00:00	599:57	BH8	Observation	10.94	7.33					
05/08/22 15:00:00	600:57	BH8	Observation	10.80	7.19		-			
11/07/22 13:00:00	00:00	вно	Observation	2.96	0.00					Static water level. Pre-pumping
12/07/22 08:00:00	17:57	BH9	Observation	3.35	0.39					
12/07/22 11:00:00	20:57	BH9	Observation	3.42	0.46					
12/07/22 14:00:00	23:57	BH9	Observation	3.49	0.53					
12/07/22 17:00:00	26:57	BH9	Observation	3.59	0.63		_			
12/07/22 20:00:00	29:57	BH9	Observation	3.70	0.74		-			
13/07/22 08:00:00	41.57	BH9	Observation	4.01	1.05					
13/07/22 14:00:00	47:57	BH9	Observation	4.13	1.17					
13/07/22 17:00:00	50:57	BH9	Observation	4.21	1.25					
13/07/22 20:00:00	53:57	BH9	Observation	4.26	1.30					
14/07/22 08:00:00	65:57 69:57	BH9	Observation	4.48	1.52		-			
14/07/22 11:00:00	71:57	BH9	Observation	4.51	1.55					
14/07/22 17:00:00	74:57	BH9	Observation	4.56	1.60					
14/07/22 20:00:00	77:57	BH9	Observation	4.60	1.64					
15/07/22 08:00:00	89:57	BH9	Observation	4.70	1.74					
15/07/22 11:00:00	92:57	BH9	Observation	4.70	1.74		-			
15/07/22 14:00:00	95:57	BH9 BH9	Observation	4.73	1.77		-	-		
15/07/22 20:00:00	101:57	BH9	Observation	4.76	1.80					
16/07/22 08:00:00	113:57	BH9	Observation	4.80	1.84					
16/07/22 11:00:00	116:57	BH9	Observation	4.81	1.85					
16/07/22 14:00:00	119:57	BH9	Observation	4.82	1.86		-			
16/07/22 17:00:00	122:57	вня	Observation	4.84	1.88		-			
17/07/22 08:00:00	137:57	BH9	Observation	4.93	1.97					
17/07/22 11:00:00	140:57	BH9	Observation	4.95	1.99					
17/07/22 14:00:00	143:57	BH9	Observation	4.96	2.00					
17/07/22 17:00:00	146:57	BH9	Observation	4.97	2.01					
17/07/22 20:00:00	149:57	вно	Observation	4.99	2.03					
18/07/22 11:00:00	164:57	BH9	Observation	5.30	2.34					
18/07/22 14:00:00	167:57	BH9	Observation	5.30	2.34					
18/07/22 17:00:00	170:57	BH9	Observation	5.50	2.54					
18/07/22 20:00:00	173:57	BH9	Observation	5.06	2.10					
19/07/22 08:00:00	185:57	BH9	Observation	5.11	2.15		-			
19/07/22 11:00:00	191:57	BH9	Observation	5.12	2.10					
19/07/22 17:00:00	194:57	BH9	Observation	5.15	2.19					
19/07/22 20:00:00	197:57	BH9	Observation	5.15	2.19					
20/07/22 08:00:00	209:57	BH9	Observation	5.29	2.33					
20/07/22 11:00:00	212:57	BH9	Observation	5.33	2.37			-		
20/07/22 14:00:00	215:57	вна	Observation	5.35 5.37	2.39					
20/07/22 20:00:00	221:57	BH9	Observation	5.38	2.42					

Date & Time		Monito	oring point	Water	level, yi	ield, & w	/ellhea	Comments		
				Water levels			Flow Rate		Odour	
24hr (day month year	Elapsod timo		Point status	er levels TOC)	(m) nwobw	idual vdown (m)	(l/s)	/ (m³/h)		
hour:minute:second)	(Hours:Minutes)	ID	observation)	Wat (mb	Drav	Res drav	Flow	Flow		
21/07/22 08:00:00	233:57	BH9	Observation	5.51	2.55					
21/07/22 11:00:00	236:57	вна	Observation	5.58	2.62					
21/07/22 17:00:00	242:57	BH9	Observation	5.63	2.67					
21/07/22 20:00:00	245:57	BH9	Observation	5.63	2.67					
22/07/22 08:00:00	257:57	BH9	Observation	5.70	2.74					
22/07/22 11:00:00	260:57	ВН9	Observation	5.70	2.74					
22/07/22 14:00:00	266:57	BH9 BH9	Observation	5.00	2.72					
22/07/22 20:00:00	269:57	BH9	Observation	5.73	2.77					
23/07/22 08:00:00	281:57	BH9	Observation	5.81	2.85					
23/07/22 11:00:00	284:57	BH9	Observation	5.84	2.88					
23/07/22 14:00:00	207.57	BH9	Observation	5.00	2.90					
23/07/22 20:00:00	293:57	BH9	Observation	5.89	2.93					
24/07/22 08:00:00	305:57	BH9	Observation	5.99	3.03					
24/07/22 11:00:00	308:57	BH9	Observation	6.00	3.04					
24/07/22 14:00:00	311:57	BH9	Observation	6.02	3.06					
24/07/22 20:00:00	317:57	BH9	Observation	6.40	3.44					
25/07/22 08:00:00	329:57	BH9	Observation	6.09	3.13	1				
25/07/22 20:00:00	341:57	BH9	Observation	6.20	3.24					
26/07/22 08:00:00	353:57	BH9	Observation	6.25	3.29				_	
26/07/22 20:00:00	365:57	вно	Observation	6.33	3.37					
27/07/22 20:00:00	389:57	BH9	Observation	6.40	3.44	+			-	
28/07/22 08:00:00	401:57	BH9	Observation	6.43	3.47					
28/07/22 20:00:00	413:57	BH9	Observation	6.48	3.52					
29/07/22 08:00:00	425:57	BH9	Observation	6.52	3.56					
29/07/22 20:00:00	437:57	BH9	Observation	6.61	3.64					
30/07/22 20:00:00	461:57	BH9	Observation	6.65	3.69					
31/07/22 08:00:00	473:57	BH9	Observation	6.69	3.73					
31/07/22 20:00:00	485:57	BH9	Observation	6.71	3.75					
01/08/22 08:00:00	497:57	BH9	Observation	6.72	3.76					
01/08/22 20:00:00	509.57 521:57	BH9	Observation	6.95	3.99					
02/08/22 20:00:00	533:57	BH9	Observation	7.02	4.06					
03/08/22 08:00:00	545:57	BH9	Observation	7.16	4.20					Pumping stopped
03/08/22 11:00:00	548:57	BH9	Observation	7.18	4.22					
03/08/22 14:00:00	551:57	ВН9	Observation	7.12	4.16					
03/08/22 20:00:00	557:57	BH9	Observation	7.20	4.24					
04/08/22 08:00:00	569:57	BH9	Observation	6.23	3.27					
04/08/22 11:00:00	572:57	BH9	Observation	5.98	3.02					
04/08/22 14:00:00	575:57	BH9	Observation	5.76	2.80					
04/08/22 17:00:00	576.57	BH9	Observation	5.51	2.55					
05/08/22 08:00:00	593:57	BH9	Observation	4.63	1.67					
05/08/22 11:00:00	596:57	BH9	Observation	4.58	1.62					
05/08/22 14:00:00	599:57	BH9	Observation	4.51	1.55					
05/08/22 15:00:00	600:57	BH9 BH11	Observation	4.44	1.48					Static water level Pre-numning
11/07/22 16:00:00	03:00	BH11	Observation	4.43	2.43					
12/07/22 08:00:00	17:57	BH11	Observation	1.82	-0.18					
12/07/22 11:00:00	20:57	BH11	Observation	1.82	-0.18			-		
12/07/22 14:00:00	23:57	BH11	Observation	1.82	-0.18					
12/07/22 17:00:00	20:57	BH11 BH11	Observation	1.83	-0.17					
13/07/22 08:00:00	41:57	BH11	Observation	1.84	-0.16					
13/07/22 11:00:00	44:57	BH11	Observation	1.85	-0.15					
13/07/22 14:00:00	47:57	BH11	Observation	1.88	-0.12					
13/07/22 17:00:00	50:57 53:57	BH11	Observation	1.97	-0.03					
14/07/22 08:00:00	65:57	BH11	Observation	2.11	0.11				1	
				•					•	

Date & Time		Monitoring point		Water	level, yi	ield, & w	ellhea	Comments		
				Water levels			Flow Rate		Odour	
24hr			Point status	r levels OC)	(m) nwob	down (m)	(l/s)	(m³,h)		
(day-month-year	Elapsed time (Hours:Minutes)	חו	(pumping or observation)	Vate nbT	Draw	Resid	NOI	NO		
14/07/22 11:00:00	68:57	BH11	Observation	2.12	0.12					
14/07/22 14:00:00	71:57	BH11	Observation	2.12	0.12					
14/07/22 17:00:00	74:57	BH11	Observation	2.12	0.12					
14/07/22 20:00:00	77:57	BH11	Observation	2.12	0.12					
15/07/22 08:00:00	89:57	BH11	Observation	2.18	0.18		-			
15/07/22 11:00:00	92:57	BH11	Observation	2.49	0.49		-			
15/07/22 14:00:00	95.57 98·57	BH11	Observation	2.59	0.59		-			
15/07/22 20:00:00	101:57	BH11	Observation	2.23	0.22					
16/07/22 08:00:00	113:57	BH11	Observation	4.27	2.27					
16/07/22 11:00:00	116:57	BH11	Observation	4.57	2.57					
16/07/22 14:00:00	119:57	BH11	Observation	4.53	2.53		_			
16/07/22 17:00:00	122:57	BH11	Observation	4.81	2.81		-			
10/07/22 20:00:00	120:07	BH11 BH11	Observation	5.35	5.35		-			
17/07/22 11:00:00	140:57	BH11	Observation	8.05	6.05					
17/07/22 14:00:00	143:57	BH11	Observation	8.24	6.24					
17/07/22 17:00:00	146:57	BH11	Observation	7.58	5.58					
17/07/22 20:00:00	149:57	BH11	Observation	7.62	5.62		_			
18/07/22 08:00:00	161:57	BH11	Observation	6.58	4.58		-			
18/07/22 11:00:00	164:57	BH11	Observation	6.06	4.06		-			
18/07/22 14:00:00	170:57	BH11	Observation	6.34	4.30			-		
18/07/22 20:00:00	173:57	BH11	Observation	6.16	4.16					
19/07/22 08:00:00	185:57	BH11	Observation	7.13	5.13					
19/07/22 11:00:00	188:57	BH11	Observation	7.30	5.30					
19/07/22 14:00:00	191:57	BH11	Observation	7.72	5.72					
19/07/22 17:00:00	194:57	BH11	Observation	8.20	6.20		-			
20/07/22 20:00:00	197:57	BH11 BH11	Observation	8.35	6.35		-			
20/07/22 00:00:00	212:57	BH11	Observation	8 77	6.74					
20/07/22 14:00:00	215:57	BH11	Observation	9.15	7.15					
20/07/22 17:00:00	218:57	BH11	Observation	9.57	7.57					
20/07/22 20:00:00	221:57	BH11	Observation	9.65	7.65					
21/07/22 08:00:00	233:57	BH11	Observation	10.03	8.03		-			
21/07/22 11:00:00	236:57	BH11	Observation	10.14	8.14		-			
21/07/22 14:00:00	239.57	BH11	Observation	10.12	8.08					
21/07/22 20:00:00	245:57	BH11	Observation	9.91	7.91					
22/07/22 08:00:00	257:57	BH11	Observation	8.03	6.03					
22/07/22 11:00:00	260:57	BH11	Observation	8.31	6.31					
22/07/22 14:00:00	263:57	BH11	Observation	8.34	6.34		-			
22/07/22 17:00:00	266:57	BH11	Observation	9.23	7.23		-			
22/07/22 20:00:00	209.57	BH11	Observation	6.64	0.70 4.64		-			
23/07/22 11:00:00	284:57	BH11	Observation	6.54	4.54					
23/07/22 14:00:00	287:57	BH11	Observation	6.27	4.27					
23/07/22 17:00:00	290:57	BH11	Observation	5.92	3.92					
23/07/22 20:00:00	293:57	BH11	Observation	5.80	3.80					
24/07/22 08:00:00	305:57	BH11	Observation	4.85	2.85		_	-		
24/07/22 11:00:00	308:57	BH11	Observation	5.17	3.17		-			
24/07/22 14:00:00	314:57	BH11	Observation	4 47	2 47					
24/07/22 20:00:00	317:57	BH11	Observation	4.40	2.40					
25/07/22 08:00:00	329:57	BH11	Observation	4.06	2.06					
25/07/22 20:00:00	341:57	BH11	Observation	5.42	3.42					
26/07/22 08:00:00	353:57	BH11	Observation	5.85	3.85					
26/07/22 20:00:00	365:57	BH11	Observation	6.84	4.84					
27/07/22 20:00:00	389.57	BH11	Observation	0.00	4.00					
28/07/22 08:00:00	401:57	BH11	Observation	8.80	6.80			+	1	
28/07/22 20:00:00	413:57	BH11	Observation	11.16	9.16				1	
29/07/22 08:00:00	425:57	BH11	Observation	13.06	11.06					
29/07/22 20:00:00	437:57	BH11	Observation	17.23	15.23					
30/07/22 08:00:00	449:57	BH11	Observation	13.79	11.79					

Date & Time		Monitoring point		Water	level, yi	ield, & w	/ellhea	Comments		
				Water levels			Flow Rate		Odour	
24hr (day-month-year	Elapsed time		Point status (pumping or	ater levels hbTOC)	awdown (m)	ssidual awdown (m)	(s/) wo	ow (m ³ /h)		
hour:minute:second)	(Hours:Minutes)	BH11	Observation)	<u> き き</u> 9 02	<u>م</u> 7 02	<u>~~</u> 5	Ē	Ē		
31/07/22 08:00:00	473:57	BH11	Observation	7.86	5.86					
31/07/22 20:00:00	485:57	BH11	Observation	9.07	7.07					
01/08/22 08:00:00	497:57	BH11	Observation	10.50	8.50					
01/08/22 20:00:00	509.57	BH11	Observation	5.39	3.39					
02/08/22 20:00:00	533:57	BH11	Observation	4.83	2.83					
03/08/22 08:00:00	545:57	BH11	Observation	5.09	3.09					Pumping stopped
03/08/22 11:00:00	548:57 551:57	BH11 BH11	Observation	5.34	3.34 6.98					
03/08/22 17:00:00	554:57	BH11	Observation	10.75	8.75					
03/08/22 20:00:00	557:57	BH11	Observation	9.92	7.92					
04/08/22 08:00:00	569:57	BH11	Observation	6.87	4.87					
04/08/22 11:00:00	572:57	BH11	Observation	6.44	4.44					
04/08/22 17:00:00	578:57	BH11	Observation	5.65	3.65	+				
04/08/22 20:00:00	581:57	BH11	Observation	5.37	3.37					
05/08/22 08:00:00	593:57	BH11	Observation	4.60	2.60					
05/08/22 11:00:00	596:57	BH11	Observation	4.43	2.43					
05/08/22 14:00:00	599:57 600:57	BH11 BH11	Observation	4.25	2.25	-				
11/07/22 12:20:00	00:00	FW1	Observation	3.90	0.00					Static water level. Pre-pumping
12/07/22 09:20:00	20:20	FW1	Observation	3.91	0.01					
13/07/22 08:00:00	41:57	FW1	Observation	3.91	0.01					
13/07/22 17:00:00	50:57	FW1	Observation	3.91	0.01					
14/07/22 17:00:00	74:57	FW1	Observation	3.93	0.03	+				
15/07/22 08:00:00	89:57	FW1	Observation	3.93	0.03					
15/07/22 17:00:00	98:57	FW1	Observation	3.94	0.04					
16/07/22 08:00:00	113:57	FW1	Observation	3.96	0.06					
17/07/22 08:00:00	122:57	FW1	Observation	4.00	0.10					
17/07/22 17:00:00	146:57	FW1	Observation	3.97	0.07					
18/07/22 08:00:00	161:57	FW1	Observation	3.96	0.06					
18/07/22 17:00:00	170:57	FW1	Observation	3.98	0.08	-				
19/07/22 08:00:00	185:57	FW1	Observation	3.97	0.07				-	
20/07/22 08:00:00	209:57	FW1	Observation	3.99	0.09					
20/07/22 17:00:00	218:57	FW1	Observation	3.98	0.08					
21/07/22 08:00:00	233:57	FW1	Observation	3.99	0.09					
21/07/22 17:00:00	242:57	FW1	Observation	4.00	0.10					
22/07/22 17:00:00	266:57	FW1	Observation	4.02	0.12					
23/07/22 08:00:00	281:57	FW1	Observation	3.98	0.08					
23/07/22 17:00:00	290:57	FW1	Observation	3.99	0.09					
24/07/22 08:00:00	305:57	FW1	Observation	3.99	0.09					
25/07/22 08:00:00	329:57	FW1	Observation	3.99	0.09					
25/07/22 20:00:00	341:57	FW1	Observation	4.00	0.10					
26/07/22 08:00:00	353:57	FW1	Observation	4.10	0.20					
26/07/22 20:00:00	365:57	FW1	Observation	3.98	0.08					
27/07/22 20:00:00	389.57	FW1	Observation	3.97 4 01	0.07					
28/07/22 08:00:00	401:57	FW1	Observation	3.98	0.08					
28/07/22 20:00:00	413:57	FW1	Observation	4.10	0.20					
29/07/22 08:00:00	425:57	FW1	Observation	3.98	0.08					
29/07/22 20:00:00	437:57		Observation	4.00	0.10					
30/07/22 20:00:00	461:57	FW1	Observation	3.98	0.03					
31/07/22 08:00:00	473:57	FW1	Observation	3.99	0.09					
31/07/22 20:00:00	485:57	FW1	Observation	3.99	0.09					
01/08/22 08:00:00	497:57	FW1	Observation	3.98	0.08					
02/08/22 08:00:00	521:57	FW1	Observation	3.98	0.08					
02/08/22 20:00:00	533:57	FW1	Observation	3.98	0.08			1		

Date & Time		Monitoring point		Water level, yield, & wellhead hydrochemist Comments								
				Water levels			Flow Rate		Odour			
24hr (day-month-year hour:minute:second)	Elapsed time (Hours:Minutes)	ID	Point status (pumping or observation)	Water levels (mbTOC)	Drawdown (m)	Residual drawdown (m)	Flow (I/s)	Flow (m ³ /h)				
03/08/22 08:00:00	545:57	FW1	Observation	3.98	0.08					Pumping stopped		
03/08/22 11:00:00	548:57	FW1	Observation	3.98	0.08							
03/08/22 14:00:00	551:57	FW1	Observation	3.98	0.08							
03/08/22 17:00:00	554:57	FW1	Observation	3.98	0.08							
03/08/22 20:00:00	557:57	FW1	Observation	3.98	0.08							
04/08/22 08:00:00	569:57	FW1	Observation	4.01	0.11							
04/08/22 11:00:00	572:57	FW1	Observation	4.00	0.10							
04/08/22 14:00:00	575:57	FW1	Observation	4.04	0.14							
04/08/22 17:00:00	578:57	FW1	Observation	4.10	0.20							
04/08/22 20:00:00	581:57	FW1	Observation	4.06	0.16							
05/08/22 08:00:00	593:57	FW1	Observation	3.98	0.08							
05/08/22 11:00:00	596:57	FW1	Observation	4.03	0.13							
05/08/22 14:00:00	599:57	FW1	Observation	4.07	0.17							
05/08/22 15:00:00	600:57	FW1	Observation	4.10	0.20							

REPORT BY Minerex Environmental Limited Doc. Ref. 3131-043 Rev.2

APPENDIX E

Mercury Renewables at Bonniconlon, Mayo Conceptual Cross Section

Minerex Drawing Ref: 3131-008. Drawn by: CF 02/09/2022

REPORT TO Firlough Hydrogen Plant, Groundwater Supply Assessment **REPORT BY** Minerex Environmental Limited Doc. Ref. 3131-043 Rev.2

APPENDIX F

Whitewater House, Boghall Road, Bray, Co. Wicklow, A98 Ireland.

 Tel:
 +353 (0)1 276 8468

 Fax:
 +353 (0)1 276 8476

 Email:
 info@whitewatercare.com

 Web:
 www.whitewatercare.com

INSPECTION SERVICE AGREEMENT

CLIENT:Killeen Castle Golf Services LtdPLANT TYPE/SERIAL NO:Water Purification SystemLOCATION:DundrumAGREEMENT NUMBER:SC1938/22

PREVENTATIVE MAINTENANCE CONTRACT

This contract allows for **4** maintenance service visits per annum to the specified equipment here within this contract. The work covered in this type of contract is described in detail on the attached specification sheets.

The current operating status of each piece of equipment will be compared against figures from previous service contract results and a report will be issued to the client and a copy kept for our records.

Contract Benefits:

- Better security of purified water supply (quality and quantity). Potential breakdown problems identified and rectified.
- Priority breakdown service. In the case of a breakdown, holders of Preventative Maintenance Contracts will receive visit priority. Access to twenty-four hour Emergency Service hotline (086 8214804). 24 hour on-call service response 24/7 (365 days). On site within 2 hour when possible. Advice to clinical engineers and/or plumbers/fitters by phone as required.
- Preventative Maintenance Contracts provide holders of these contracts with ongoing system condition information/documentation to comply with validation compliance with Pharmacopoeial or other strict standards.
- Changes in raw mains feed water quality identified. Significant changes in the quality of site water supply will be recognised early and actions recommended if necessary.

R. S. White (Water Treatment) Limited | Directors M. Keating, T.M. Quinn | Registered in Dublin No. 95369

Caring about water since 1932

Services Include:

Summary of Plant Components and Description of Service Work The plant consists of the following main parts

Equipment	Maintenance Carried Out
Booster Pumps	Check output pressure and flow rate.
	Check automatic changeover.
	Check for leaks.
Water Softeners	Check for pressure drop.
	Clean and grease main and pilot pistons.
	Check regeneration operation.
	Check Salt Tank level.
	Check for leaks.
Carbon Filters	Check for pressure drop.
	Clean and grease main and pilot pistons.
	Check backwash operation.
	Repack carbon annually.
	Check for leaks.
Nest Filters	Replace Filters.
	Check for leaks.
RO Unit	Change RO pre-filter.
	Clean RO membranes.
	Replace PSU 15A fuse annually
	Re-balance flows and pressures
Pressure Gauges	Check all gauges and record pressure drops.
Log Sheets	Complete pre-treatment and RO unit log sheets.

Whitewater Maintenance Procedure:

A. The Maintenance Procedure:

Is designed to cover every main item of equipment in the system, unless excluded, and to test all interlocks and alarm procedures where possible and practical. However, this will exclude any procedures which will infringe the sterility of any sections of the system that have a microbiological specification.

B. Analytical Tests:

Raw Water and various inter-stage water samples will be tested using standard test kits. These results are used to confirm the correct chemical operation of plant items and also confirm the feed water quality to key items is within the design specification. (These tests give results to an accuracy in parts per million. High sensitivity instrumental chemical analysis can be supplied at extra cost if required.)

C. Actions:

Caring about water since 1932

Any minor faults that are found or minor adjustments that are required will be carried out if possible and the changes will be recorded. Any work required that cannot be carried out will be noted and recommendations will be given in final report.

D. Report:

It is Whitewater's policy to provide signed soft copy service reports on completion of all repair & maintenance procedures to designated technical departments after each visit to site. Each of our service engineers is equipped with the latest reporting technology, for field service engineers for real time reporting to customers. It manages our field staff/scheduling on-screen from the office – accurate/real time job reporting, quickens response times for follow up.

Inspection/Service Contract:

- 1. Check quality of water supply to be treated and check for any change in quality which may affect plant performance.
- 2. Check on treated water quality and salt usage.
- **3.** Check on filter bed and resin quality. Filter bed quality are checked when there is a reason to suspect there may be a problem i.e. poor quality, high pressure drop, etc. Where a recharge is required for no obvious reason we would then arrange tests to establish cause.
- 4. All mechanical and electrical components are checked for wear and tear, with particular emphasis on seals, glands and controls.
- 5. The data on your plant will be recorded on our CRM data base to maintain a complete service record of each individual plant at your site.
- 6. One weeks' notice to be given prior to service visit.
- 7. Any operational problems are checked out with your staff.
- 8. After the service visit, recommendations with regards to the plant will be made if required.
- 9. Perform Sanitisation and Chemical Cleaning Schedule.
- **10.** Resetting of the softener, carbon bed and filters to winter and summer times.
- 11. Instrument Calibrations There is no calibration included in the scope of this contact.

12. Working Hours & Rates:

The amount of time required to service a particular part of the installation may vary from time to time. No extra charge will be made if extra time is required to conduct normal maintenance, however, should a service visit be prolonged by factors outside the control of Whitewater, this additional time will be invoiced at the rates quoted for additional works.

Normal working hours of work are defined to be 08:30 to 17:00 Monday to Friday, excluding Bank and Public Holidays.

Caring about water since 1932

Unless specified to the contrary, all hours worked outside of these hours are subject to the following overtime rates and may be charged in addition.

13. Warranties and Guarantees:

Whitewater warrants that it executes it services with due skill and care and in the event that a service has not been performed to an acceptable standard the work will be repeated free of charge. These remedies are Whitewater's sole liability with respect to this contract.

14. Site Requirements

During a service visit, it is necessary that the Whitewater service engineer has full access to the equipment and all utility services to this equipment. All service visits will be scheduled in advance for the period of the Contract and every effort will be made to work around our Client's requirements. Rearrangement of scheduled visits by the Client should be advised in writing to Whitewater offices at least two (2) weeks in advance.

Although our engineers carry a comprehensive set of tools, items such as access platforms may be requested of the customer.

15. Safety

Work Permits must be made available by the Client, If not available Whitewater will only commence work when the client has pre-signed the Whitewater work permit on service report sheet. Site Induction Training if required will be to the clients account.

Whitewater engineers are Safe Pass certified and have had additional training in accordance with the Whitewater site safety booklet. Whitewater Engineers are also trained on all aspects of Safety in servicing this type of equipment.

16. Call Out Provision in Contract

It has been our experience that customer accounts departments prefer all unplanned or call out work to be accompanied by a purchase order. Since unplanned outages and emergency call outs usually occur at the most inconvenient times we recommend that you make provision for call outs in this service agreement by adding a preagreed provision for call out services.

In the event this is not used up the balance will be credited back at the end of the agreement period. In the event that the provision is exceeded we will advise you and suggest an upgrade on the same basis, as it is always best to be prepared in advance for the unexpected.

If the pre-agreed provision is not taken up at the outset of the service contract we will request a purchase order for each call out, but you will still benefit from the discounted rates and response level you have engaged.

Caring about water since 1932

Contract Exclusions:

The contracts excludes the following unless specified otherwise:

- Filters, Membranes and Parts

Contract Inclusions:

The contract includes the following unless specified otherwise
Qty
Unit Price
(EUP)

		(EUR)	(EUR)
4	Service Visits	1045.00	4180.00

Consumables required but not included in contract:

2	V360 Piston Service Kit - When required	769.00	1538.00
1	CCS14x Maintenance Kit - req at visit 2	375.00	375.00
4	Electrode (50005256) - 1 required at each visit	88.00	352.00
1	Kit, Valve/Diaph. SD-S-PVC/V/C-1 - when req	171.00	171.00
1	Diaphragm Valve Kit for DME8 (Chlorine) - When required	221.00	221.00
2	Foot Valve FV-NL-G5	151.00	302.00
2	9M DME Injector PVDF - req at visit 2 & 4	124.00	248.00

Total cost of contract per annum Price per visit EUR 4180.00 EUR 1045.00

Total

Caring about water since 1932

AGREEMENT

This Agreement is made this day 18/07/2022 between Whitewater and:

Killeen Castle Golf Services Ltd

Hereinafter called the client.

That for a charge of **EUR 1045.00 per visit**, a Whitewater Service Engineer will visit the above mentioned site **4 times a year times a year** to service, examine, and where necessary, adjust the systems and also make any recommendations pertinent to ensure that the plants are maintained and in good working order. This contract will run for 12 consecutive months commencing 1st of month in which PO is given.

This Agreement only covers the work as previously stated, any additional work or dismantling necessary to repair the plant will be charged at the current service rates as well as spare parts used. Where additional work is necessary, an estimate for spare parts will be forwarded to the client for his approval.

This Agreement **SC1938/22** may be terminated by either party, giving sixty days' notice in writing. Title to Goods/Services shall not pass to the Buyer but shall be retained by the Seller until the contract price has been paid to the seller in full by the buyer

Order Number: ____

(Please issue an order number to cover above)

SIGNED:

SIGNED: 1/dm ling 23/04/2022, FOR AND ON BEHALF OF: Whitewater Whitewater House Boghall Road Bray Co Wicklow

FOR AND ON BEHALF OF:-Killeen Castle Golf Services Ltd Usher House Main Street Dundrum Dublin 14

Caring about water since 1932

General Terms and Conditions - R.S White (Water Treatment) Ltd, T/A Whitewater

R.S White (Water Treatment) Ltd, T/A Whitewater and also Whitewater Service hereafter named Whitewater. Whitewater quotations are valid from the date of issue. Quotations are for the sole use of the addressee, to be treated as commercially sensitive. We reserve the right to withdraw a quotation which has been passed to you by a third party.

PRICES:

Prices quoted are current net prices & are subject to VAT at the appropriate rate. Prices quoted are valid for the validity period. However, imported items are subject to variation due to international currency rates changing during that period.

TERMS OF PAYMENT:

30 days from invoice after each visit

VALIDITY:

Our offer is open for acceptance 30 days from date of quotation.

WARRANTY:

The purification system will be covered by 12 months parts and labour from date of commissioning or 18 months from date of delivery whichever is sooner, subject to the following provisions:

A The water system has been installed by or in accordance with instructions given by Whitewater.

B The water system has been operated in accordance with Whitewater operating and maintenance instructions.

C The nature of the input water used as our design basis or other governing data to the water system has not changed in comparison by a significant amount.

There has been no exchange or modification of the water system or the parts there of after installation without agreement with Whitewater. Supplies of regenerant chemicals and consumable items of the specified quality have been maintained and used in accordance with Whitewater instructions.

The plant has not been misused or damaged by external force.

RETENTION OF TITLE CLAUSE, ALL MONIES CLAUSE:

Title to goods/services shall not pass to the buyer but shall be retained by the seller until the contract price has been paid to the seller in full by the buyer.

The Customer shall permit the employees or agents of the Company to enter the Customer's premises to repossess goods subject to this retention of title. In the event of the goods being at the premises of a third party by the direction of the Customer then the Customer shall, if required by the Company, remove the goods and return them to the Company immediately.

FORCE MAJEURE:

The Company shall be under no liability if it is prevented from, or delayed in, carrying out the whole or any part of the contract for any cause beyond its control.

DELIVERY:

working weeks ex works from receipt of official order & full instructions enabling us to proceed uninterrupted with manufacture. We will deem that all goods as delivered when signed for on the buyer's behalf at advised delivery address.

BASES AND DRAINS:

We have assumed that appropriate bases will be provided for the units, which will be +/- 6 mm over the whole area. We also assume appropriate drains will be provided.

INSTALLATION:

Caring about water since 1932

Where included for the priced separately, we assume that normal site services are available for our Technicians, including use of power, water & telephone facilities. Installation excludes all electrical works

Commissioning will take place immediately after installation. A responsible person must be available during this period for instruction on operation of the plant. Immediately after commissioning the operation of the plant becomes the purchaser's responsibility.

CLAIMS:

The Customer shall have no claim for shortage or defects. Unless:

- The Customer inspects the goods and a written complaint specifying the shortage or defect is made to the Company within 10 days of delivery of the goods (in the case of shortage, or visible defects) or as soon as possible after the discovery of the defect (if it was not visible at the time of delivery); and
- 2. The Company is given an opportunity to inspect the goods and investigate any complaint before any use is made of the goods.
- 3. Notwithstanding the periods provided in condition 1 for making claims, the Company will not accept liability for notifying carriers of, nor will it have any liability to the Purchaser for, any claim for shortage or defect, or for any loss, damage, delay in transit or mis-delivery, unless the Customer puts the Company in a position to be able to comply with the claims procedures under the carrier's conditions current at the commencement of transit.

The Company shall not be liable for any claim for loss or damage in finished work containing the Company's products due to fair wear and tear, misuse or failure to comply with the Company's Product Literature.

TERMINATION POINTS:

Terminations as specified.

TERMS & CONDITIONS FOR SERVICE:

Where the date &/or time for works to be carried out is agreed by the Company with the Customer, then the Company shall use its best endeavours to ensure that the operative shall attend on the date & at the time agreed. However, the Company accepts no liability in respect of the non-attendance or late attendance on site of the operative/engineer or for the late or non-delivery of materials.

Where the Company agrees to carry out works on installations of inferior quality or over ten years old at that date no warranty is given in respect of such works & the Company accepts no liability in respect of the effectiveness of such works or otherwise.

We shall supply the Works to You in accordance with the Order in all material respects.

We shall have the right to make any changes to the Works which are necessary to comply with any applicable laws and/or safety requirements, or which do not materially affect the nature or quality of the Works, and We shall notify You in any such event.

The Works will be supplied in a good and workmanlike manner using all reasonable care and skill.

If we consider that Additional Works are required or recommended, we shall advise you as soon as possible and if we are in a position to undertake such Additional Works, We will provide you with an estimate of the time required to complete such Additional Works and the associated costs.

If we discover that there are issues which prevent us from completing the Works we will notify you and you shall have the option to either:

- 1. End the Contract
- 2. Suspend the Contract until such time as such issues are rectified. If such issues are not rectified within 6 months either party may terminate the Contract.

The Company shall not be liable for any delay or for the consequences of any delay in performing any of its obligations if such delay is due to any cause whatsoever beyond its reasonable control & the Company shall be entitled to a reasonable extension of the time for performing such obligations.

The Company shall only be liable for rectifying works completed by the Company & shall not be held responsible for ensuing damage or claims resulting from this or other work overlooked or subsequently requested & not undertaken at that time. These

Caring about water since 1932

terms & conditions & all contracts awarded between the Company & Customer shall be governed & construed in accordance with Irish law & shall be subject to the exclusive jurisdiction of Ireland.

For out of hours servicing, the engineer has the discretion to supply whatever parts are deemed necessary for essential maintenance.

Service Rates:

Will be agreed in advance and are based on time (including travelling time) and agreed mileage charge. The Agreement and these Terms and Conditions (including any non-contractual matters and obligations arising therefrom or associated therewith) shall be governed by, and construed in accordance with, the laws of Ireland.

EXCLUSIONS:

We exclude any items not specifically listed. For your information these would mainly be:

- A. Installation and offloading. Demurrage charges incurred by delays in off-loading, cranage on site, site erection and installation. All electrical works
- B. Storage area or facilities for plant delivered to site.
- C. Any civil engineering or building works required on site.
- D. All safety notices or hand railing associated with the plant except that listed in the specification.
- E. Supply and installation of pipe work outside the limits of our equipment including drains, etc. for disposal of effluent or regeneration chemicals or rinse water
- F. Raw water, regenerant chemicals required for testing, commissioning or subsequent operation of the plant.
- G. Lagging of any equipment or pipe work supplied by Whitewater.
- H. Project Supervisor Design Process (PSDP) and Project Supervisor Construction Stage (PSCS).
- I. Distribution Loop.
- J. Electrical installation materials and labour.
- K. Labelling apart from valve and instrumentation.
- L. Local electrical isolators to our equipment.
- M. Removal of existing equipment.
- N. Third party inspection.
- O. Any water analysis.

Caring about water since 1932

Whitewater House, Boghall Road,
Bray, Co. Wicklow, A98 E097,
Ireland.Tel:+353 (0) 1 276 8468
Fax:Fax:+353 (0) 1 276 8476Email:info@whitewatercare.comWeb:www.whitewatercare.com

Technical Service Report – VIS16065

Reason for visit:	Contract: SC1938/22- Contract Item: Water Purification System - 2 of 4	
Engineer Name:	Jason Beers	
Secondary Engineer Name:		
Department:	Plant Room	
Address:	Usher House	
Site Contact	Darren Curley	
Order No:	Darren Curley	
Date:	02/02/2023	
Company Name:	Killeen Castle Golf Services Ltd	
Plant Type:	Water Purification System	
Serial No:	N/A	
Next Service Due:	10/05/2023	

Time & Travel:

Start Date:	02/02/2023	
End Date:	02/02/2023	
Total Hours on Site:		
Travel Time:		

Initial Water Analysis:

	Raw	Treated
T Hardness	427.5	nil
Р.Н.	7.49	7.49
Conductivity	682	682
Iron	N/A	N/A
Chlorine	From borewell nil	On recirc 0.68 to site 0.66
co ²	N/A	N/A
Manganese	N/A	N/A
Temperature	11.0	11.0
Silt Density Index	N/A	N/A

Initial System Flow Rates:

Equipments	Maintenance Carried Out	
Plant Inspection	Plant Inspection Inspect plant with Client and identify any ongoing problems/Complete Hardness, Chlorine, Conductivity and pH Test on feed water. Redo tests post service. Inspect all Mechanical and Electrical operation. Repair or replace faulty or scheduled parts as per job card. ALL filter cartridges to be replaced unless client requests otherwise. (Note on signed report if filter cartridges have not been replaced)	
Raw Water Tank	Check ballcock and inlet valve operation./Check level controls./Check for leaks.	N/A
Booster Pumps	Check output pressure and flow rate/Check for leaks/Check automatic changeover.	Yes
Multimedia Filters	Check for pressure drop/Clean and grease main and pilot pistons/Check backwash operation/Check for leaks.	YES
Organic Scavengers	Check for pressure drop/Clean and grease main and pilot pistons/Check regeneration operation/Check Salt Tank level/Check for leaks.	N/A
Water Softeners	Water Softeners Check for pressure drop/Clean and grease main and pilot pistons/Check backwash operation/Check for leaks	
UV Units	Check countdown timer. UV lamp changed annually/Check for leaks.	Yes
Check for pressure drop/Clean and grease main and pilot pistons/Check backwash operation/Check for leaks/Repack carbon annually		N/A
Chlorine Analyser	Check reagent levels. Refill as necessary/Cross check chlorine reading and recalibrate annually/Check for leaks	yes
Nest Filters	Replace Filters/Check for leaks.	N/A
RO Unit	Change RO pre-filter.	N/A
	Clean RO membranes.	N/A
	Re-balance flows and pressures	N/A
	Replace PSU 15A fuse annually	N/A
Pressure Gauges	Check all gauges and record pressure drops.	N/A
Log Sheets	Complete pre-treatment and RO unit log sheets.	N/A
Safety Checks	Ensure work permits are obtained and method statements are reviewed and signed off.Complete a site walk through, check for slips, trips and obstacles, assess for any potential hazards prior to commencing any works. Any potential hazards need reported and removed before work commences.	Yes

Report:

Carried out routine service on plant

Checked chlorine dosing pumps and injection lines ok

Checked chlorine levels on recirculation and to site line against readings on site controllers and had to carry out a calibration as readings badly out. Checked and backwashed water softeners and Checked operation/cycles ok

Sample points on water softener outlet not working and also sample point that feeds the recirculation chlorine analyser badly leaking and will need replaced.

Left all plant back online

Final Water Analysis:

	Raw	Treated
T Hardness	427.5	nil
P.H.	7.49	7.49
Conductivity	682	682
Iron	n/a	n/a
Chlorine	Nil	Recirc 0.68 to site 0.66
co ²	n/a	n/a
Manganese	n/a	n/a
Temperature	11.0	11.0
Silt Density Index	N/a	N/a

Final System Flow Rates:

Final Checks Before Leaving Site:	
Check all valves/power supplies and confirm that system is in full operational mode	Yes
Clean down plant and leave area in tidy and safe condition	Yes
Complete Service Report indicating any action that may be required. Include serial number of units. Consult with client in regard to any recommendations and to sign completed Service Report.	Yes
Fill relevant service labels and attached to equipment or panel.	Yes
Investigate and replace clients stock as necessary where required.	N/A

Recommendations:

2x softener sample points (on outlet pipework) 1x sample point that feeds chlorine analyser (Details sent in email) Recommend a full service kits for the water softener siata heads as they have never been carried out piston/spacers etc (Details sent in email)

Consumables & Parts Used/Issued:

Qty	Code	Description		Location	SO Number
1	95730924	9M DME Inject	or PVDF	Stock	
1	71076921	CCS14x Mainte	enance Kit	Used from Client Stock	
1	CCY14-F	Electrode (50005256)		Stock	
	Engineer Signatur	e		Customer Si	gnature
	B_		Sit	e Contact rren Curley	

Initial System Flow Rates:

N/A

Equipments	Maintenance Carried Out	
Plant Inspection	Inspect plant with Client and identify any ongoing problems/Complete Hardness, Chlorine, Conductivity and pH Test on feed water. Redo tests post service. Inspect all Mechanical and Electrical operation. Repair or replace faulty or scheduled parts as per job card. ALL filter cartridges to be replaced unless client requests otherwise. (Note on signed report if filter cartridges have not been replaced)	Yes
Raw Water Tank	Check ballcock and inlet valve operation./Check level controls./Check for leaks.	Yes
Booster Pumps	Check output pressure and flow rate/Check for leaks/Check automatic changeover.	N/A
Multimedia Filters	Check for pressure drop/Clean and grease main and pilot pistons/Check backwash operation/Check for leaks.	n/a
Organic Scavengers	Check for pressure drop/Clean and grease main and pilot pistons/Check regeneration operation/Check Salt Tank level/Check for leaks.	n/a
Water Softeners Check for pressure drop/Clean and grease main and pilot pistons/Check backwash operation/Check for leaks		serviced
UV Units	Check countdown timer. UV lamp changed annually/Check for leaks.	n/a
Carbon Filters	Check for pressure drop/Clean and grease main and pilot pistons/Check backwash operation/Check for leaks/Repack carbon annually	n/a
Chlorine Analyser	Check reagent levels. Refill as necessary/Cross check chlorine reading and recalibrate annually/Check for leaks	Serviced
Nest Filters	Replace Filters/Check for leaks.	Yes
RO Unit	Change RO pre-filter.	N/A
	Clean RO membranes.	N/A
	Re-balance flows and pressures	Yes
	Replace PSU 15A fuse annually	No
Pressure Gauges	Check all gauges and record pressure drops.	Yes
Log Sheets	Complete pre-treatment and RO unit log sheets.	N/A
Safety Checks	Ensure work permits are obtained and method statements are reviewed and signed off.Complete a site walk through, check for slips, trips and obstacles, assess for any potential hazards prior to commencing any works. Any potential hazards need reported and removed before work commences.	Yes

Report:

Routine service visit carried out. No faults reported prior to visit other than a few small leaks. These are now fixed. Replace 3 x sample taps and check for operation. Check quality output <0.05ppm hardness. Replace electrode x 2 and calibrate cells x 2. Clean flow chambers. On the chlorine tank replace foot valve and test after purging air. An acid clean will need to be done next service on the flow Chambers. Fix leak at high level sample valve. Reduce compressor pressure from 5bar to 3.5bar. Over pressure is causing blow off on Siata valve and possible damage to valve head pistons. (Photo in e mail). System ready for use. Area remains clean and tidy, all waste removed for disposal.

Final Water Analysis:

	Raw	Treated
T Hardness	340 ppm	<0.05 ppm
Р.Н.	7.3	7.3
Conductivity	n/a	N/A
Iron	n/a	N/A
Chlorine	0.16	n/d
co ²	n/a	N/A
Manganese	n/a	N/A
Temperature	18°C	18 °C
Silt Density Index	N/a	N/A

Final System Flow Rates:

N/A

Final Checks Before Leaving Site:								
Check all valves/power supplies and confirm that system is in full operational mode	Yes							
Clean down plant and leave area in tidy and safe condition Yes								
Complete Service Report indicating any action that may be required. Include serial number of units. Consult with client in Yes								
Fill relevant service labels and attached to equipment or panel.	Yes							
Investigate and replace clients stock as necessary where required.								

Recommendations:

Recommend 3 service kits next visit for the chlorine pumps.
1 x Grundfos DME 8
2 x Grundfos DDA 7.5
Recommend brine tank cleaned due to heavy fouling.

Consumables & Parts Used/Issued:

Qty	Code	Description	Location	SO Number
2	CCY14-F	Electrode (50005256)		
1	98070953	Foot Valve FV-NL-G5		
2	71076921	CCS14x Maintenance Kit		
3	FIT010	Fittings		SO-00015040
	Engineer Signature		Custom	er Signature

Notes:

REPORT TO Firlough Hydrogen Plant, Groundwater Supply Assessment

APPENDIX G

Exceedance of Limit									
NS: Not Sampled									
COMPOUND NAME	COMPOUND CLASS	GROUNDWATER REGULATIONS S.I. No. 9 of 2010	INTERIM GUIDELINE VALUES (IGV's) (EPA 2004)	SAMPLING DATE	UNITS	BH6	BH7	FW1	SP
				11/07/2022					
Alkalinity, Total as CaCO3	Inorganics			12/07/2022	mg/l	465	470	440	395
Alkalinity, Total as CaCO3	Inorganics			22/07/2022	mg/l	470	450	NS	NS
Ammoniacal Nitrogen as N (low level)	Inorganics	0.065 - 0.175		11/07/2022	mg/l	0.345	464	430	0.0180
Ammoniacal Nitrogen as N (low level)	Inorganics	0.065 - 0.175		12/07/2022	mg/l	0.299	0.313	0.0331 NS	0.0105 NS
Ammoniacal Nitrogen as N (low level)	Inorganics	0.065 - 0.175		22/07/2022	mg/l	0.279	0.303	0.0411	0.0437
Apparent Colour	Inorganics			11/07/2022	mg/I Pt/Co	6.9	6.1	14.2	17.2
Apparent Colour	Inorganics			12/07/2022	mg/I Pt/Co	9.7	29.6	NS	NS
Apparent Colour	Inorganics			22/07/2022	mg/I Pt/Co	19.5	70	19.8	36.1
BOD, unfiltered	Inorganics			11/07/2022	mg/l	<10	2	<1	<1
BOD, unfiltered	Inorganics			12/07/2022	mg/l	2.17	22	NS	NS
BOD, unfiltered	Inorganics			22/07/2022	mg/l	<1	7.11	<1	<1
Chloride	Inorganics	24-187.50	30	11/07/2022	mg/l	33.9	34.6	31	21.8
Chloride	Inorganics	24-187.50	30	12/07/2022	mg/l	30.4	50	NS	NS
Chloride	Inorganics	24-187.50	30	11/07/2022	mg/l	31.8	43.3	35.9	23.1
COD, unfiltered	Inorganics			12/07/2022	mg/l	<7	<7	<7	13.7
	Inorganics			22/07/2022	mg/i	8.48	</td <td>NS 47</td> <td>NS</td>	NS 47	NS
Electrical Conductivity	Inorganics			11/07/2022	mg/i	\$7	<br 013	\$7	10.6
Electrical Conductivity	Inorganics			12/07/2022	uS/cm	899	913	NS	735 NS
Electrical Conductivity	Inorganics			22/07/2022	uS/cm	863	933	901	773
Nitrate as N	Inorganics	8.50	5.7	11/07/2022	mg/l	<0.07	<0.07	0.579	0.746
Nitrate as N	Inorganics	8.50	5.7	12/07/2022	mg/l	0.296	<0.07	NS	NS
Nitrate as N	Inorganics	8.50	5.7	22/07/2022	mg/l	<0.07	<0.07	1.34	0.347
Nitrite as NO2	Inorganics	0.375	0.10	11/07/2022	mg/l	<0.05	<0.05	<0.05	<0.05
Nitrite as NO2	Inorganics	0.375	0.10	12/07/2022	mg/l	<0.05	<0.05	NS	NS
Nitrite as NO2	Inorganics	0.375	0.10	22/07/2022	mg/l	<0.05	<0.05	<0.05	<0.05
pH	Inorganics		>6.5 <9.5	11/07/2022	pН	7.15	6.99	6.48	6.74
pH	Inorganics		>6.5 <9.5	12/07/2022	pН	7.15	7.06	NS	NS
pH	Inorganics	0.025	>6.5 <9.5	11/07/2022	pН	6.87	6.91	6.61	6.81
Phosphate (Ortho as P)	Inorganics	0.035	0.03	12/07/2022	mg/l	<0.02	<0.02	< 0.02	<0.02
Phosphate (Ortho as P)	Inorganics	0.035	0.03	22/07/2022	mg/l	<0.02	<0.02	NS	NS 10.00
Priosphate (Ortho as P) Redox (eH)	Inorganics	0.000	0.00	11/07/2022	mg/i	<0.02	<0.02	<0.02	<0.02
Redox (eH)	Inorganics			12/07/2022	mV	-210	-219	NS	NS
Redox (eH)	Inorganics			22/07/2022	mV	-243	-269	129	145
Sulphate	Inorganics	187.50	200	11/07/2022	mg/l	13.6	14.7	10.7	12.7
Sulphate	Inorganics	187.50	200	12/07/2022	mg/l	28.7	23.1	NS	NS
Sulphate	Inorganics	187.50	200	22/07/2022	mg/l	17.5	25.5	12.5	23.7
Suspended solids, Total	Inorganics			11/07/2022	mg/l	<2	<2	<2	3.05
Suspended solids, Total	Inorganics			12/07/2022	mg/l	<2	3.4	NS	NS
Suspended solids, Total	Inorganics			22/07/2022	mg/l	<2	<2	<2	13.7
Temperature	Inorganics			11/07/2022	oC	13.9	13	13.7	13.1
Temperature	Inorganics			12/07/2022	oC	13.2	13	NS	NS
	Inorganics			11/07/2022	0C	12.8	12.7	15.2	16
True Colour	Inorganics			12/07/2022	mg/I Pt/Co	<1	<1	9.9	14.3
True Colour	Inorganics			22/07/2022	mg/I Pt/Co		17	11	15.0
Aluminium (diss filt)	Metals		200	11/07/2022		<10	<10	<10	<10
Aluminium (diss.filt)	Metals		200	12/07/2022	ua/l	<10	<10	NS	NS
Aluminium (diss.filt)	Metals		200	22/07/2022	µg/l	<10	<10	<10	<10
Aluminium (tot.unfilt)	Metals			11/07/2022	µg/l	<10	18.2	<10	74.8
Aluminium (tot.unfilt)	Metals			12/07/2022	µg/l	10.7	<10	NS	NS
Aluminium (tot.unfilt)	Metals			22/07/2022	µg/l	<10	<10	<10	27.3
Arsenic (diss.filt)	Metals	7.50	10	11/07/2022	µg/l	<0.5	<0.5	<0.5	<0.5
Arsenic (diss.filt)	Metals	7.50	10	12/07/2022	µg/l	<0.5	<0.5	NS	NS
Arsenic (diss.filt)	Metals	7.50	10	22/07/2022	µg/l	<0.5	<0.5	<0.5	<0.5
Arsenic (tot.unfilt)	Metals			11/07/2022	µg/l	<2	<2	<2	<2
Arsenic (tot.unfilt)	Metals			22/07/2022	µg/l	<2	<2	NS	NS
Arsenic (tot.untilt)	Metals			11/07/2022	µg/l	<2	<2	<2	<2
Danun (diss.tilt)	Motolo			12/07/2022	µg/I	68.7	83.4	67.6	28.7
Barium (diss.filt)	Metals			22/07/2022	µg/i	70	84.6	NS 67.0	NS
Barium (tot unfilt)	Metals		100	11/07/2022	µg/l	69.4	92	0/.0 70.4	24.6
Barium (tot.unfilt)	Metals		100	12/07/2022	ua/l	70.5	83 Q	12.1 NS	29.4 NR
Barium (tot.unfilt)	Metals		100	22/07/2022	µg/l	83.8	90.1	70.8	25
Cadmium (diss.filt)	Metals			11/07/2022	μg/l	<0.08	<0.08	0.311	0.11
Cadmium (diss.filt)	Metals			12/07/2022	µg/l	<0.08	<0.08	NS	NS
Cadmium (diss.filt)	Metals			22/07/2022	µg/l	<0.08	<0.08	0.257	0.132
Cadmium (tot.unfilt)	Metals		5	11/07/2022	µg/l	<0.5	<0.5	<0.5	<0.5

Exceedance of Limit									
NS: Not Sampled			·			1	1		
COMPOUND NAME	COMPOUND CLASS	GROUNDWATER REGULATIONS S.I. No. 9 of 2010	INTERIM GUIDELINE VALUES (IGV's) (EPA 2004)	SAMPLING DATE	UNITS	BH6	BH7	FW1	SP
Cadmium (tot.unfilt)	Metals		5	12/07/2022	µg/l	<0.5	<0.5	NS	NS
Cadmium (tot.unfilt)	Metals		5	22/07/2022	µg/l	<0.5	<0.5	<0.5	<0.5
Chromium (diss.filt)	Metals	37.500	30	11/07/2022	µg/l	<1	<1	<1	<1
Chromium (diss.filt)	Metals	37.500	30	12/07/2022	µg/l	5.83	9.07	NS	NS
Chromium (diss.filt)	Metals	37.500	30	22/07/2022	µg/l	<1	<1	<1	<1
Chromium (tot.unfilt)	Metals			11/07/2022	µg/l	<3	<3	<3	<3
Chromium (tot.unfilt)	Metals			12/07/2022	µg/l	7.26	10.7	NS	NS
Chromium (tot.unfilt)	Metals			22/07/2022	µg/l	<3	<3	<3	<3
Copper (diss.filt)	Metals		30	11/07/2022	µg/l	<0.3	<0.3	20.8	0.92
Copper (diss.filt)	Metals		30	12/07/2022	µg/l	0.585	<0.3	NS	NS
Copper (diss.filt)	Metals		30	22/07/2022	µg/l	0.398	<0.3	23.9	1.45
Copper (tot.unfilt)	Metals		30	11/07/2022	µg/l	<1	<1	23.9	1.91
Copper (tot.unfilt)	Metals		30	12/07/2022	µg/l	1.35	<1	NS	NS
Copper (tot.unfilt)	Metals		30	22/07/2022	µg/l	<1	<1	31	1.4
Hardness, Total as CaCO3 unfiltered	Metals			11/07/2022	mg/l	385	409	504	427
Hardness, Total as CaCO3 unfiltered	Metals			12/07/2022	mg/l	405	400	NS	NS
Hardness, Total as CaCO3 unfiltered	Metals			22/07/2022	mg/l	392	366	439	387
Iron (Dis.Filt)	Metals		0.2	11/07/2022	mg/l	<0.019	<0.019	<0.019	0.0272
Iron (Dis.Filt)	Metals		0.2	12/07/2022	mg/l	<0.019	<0.019	NS	NS
Iron (Dis.Filt)	Metals		0.2	22/07/2022	mg/l	<0.019	<0.019	<0.019	<0.019
Iron (Tot. Unfilt.)	Metals		0.2	11/07/2022	mg/l	<0.024	0.041	0.0434	0.582
Iron (Tot. Unfilt.)	Metals		0.2	12/07/2022	mg/l	<0.024	<0.024	NS	NS
Iron (Tot. Unfilt.)	Metals	7.50	0.2	22/07/2022	mg/l	<0.024	<0.024	<0.024	0.131
Lead (diss.filt)	Metals	7.50	10	11/07/2022	µg/l	<0.2	<0.2	0.4	<0.2
Lead (diss.filt)	Metals	7.50	10	12/07/2022	µg/l	<0.2	<0.2	NS	NS
Lead (diss.filt)	Metals	7.50	10	22/07/2022	µg/l	0.595	<0.2	0.536	<0.2
Lead (tot.unfilt)	Metals		10	11/07/2022	µg/l	<1	<1	<1	<1
Lead (tot.unfilt)	Metals		10	12/07/2022	µg/l	<1	<1	NS	NS
Lead (tot.unfilt)	Metals		10	22/07/2022	µg/l	<1	<1	<1	<1
Calcium (Dis.Filt)	Metals			11/07/2022	mg/l	60.2	72.6	166	147
Calcium (Dis.Filt)	Metals			12/07/2022	mg/l	76.2	77.7	NS	NS
Calcium (Dis.Filt)	Metals		000	22/07/2022	mg/l	83.3	79	156	144
Calcium (Tot. Unfilt.)	Metals		200	10/07/2022	mg/l	70.4	81.9	183	154
Calcium (Tot. Unfilt.)	Metals		200	12/07/2022	mg/l	84	83.8	NS	NS
Calcium (Tot. Unfilt.)	Metals		200	22/07/2022	mg/l	87.7	79.5	160	143
Magnesium (Dis.Filt)	Metals			11/07/2022	mg/l	43.2	43.6	8.73	9.16
Magnesium (Dis.Filt)	Metals			12/07/2022	mg/l	43.6	41.4	NS	NS
Magnesium (Dis.Filt)	Metals			22/07/2022	mg/l	41.6	41.7	8.97	8.85
Magnesium (Tot. Unfilt.)	Metals			12/07/2022	mg/l	48.4	49.7	11.3	10.1
Magnesium (Tot. Unfilt.)	Metals			22/07/2022	mg/l	47.4	46.3	NS	NS
Magnesium (Tot. Unfilt.)	Metals		50.00	11/07/2022	mg/l	41.8	40.6	9.47	8.78
Manganese (diss.filt)	Metals		50.00	12/07/2022	µg/l	<3	3.02	31.8	<3
Manganese (diss.filt)	Metals		50.00	22/07/2022	µg/l	<3	<3	NS	NS
Manganese (diss.filt)	Metals		50.00	11/07/2022	µg/l	5.33	3.85	26.2	4.19
Manganese (tot.unfilt)	Metals		50.00	12/07/2022	µg/l	2.47	2.65	37.7	6.05
Manganese (tot.unfilt)	Metals		50.00	22/07/2022	µg/l	3.27	2.99	NS	NS
Manganese (tot.unfilt)	Metals	0.75	50.00	11/07/2022	µg/l	4.33	3.79	28.1	5.32
Mercury (diss.filt)	Metals	0.75		12/07/2022	µg/i	<0.01	<0.01	<0.01	<0.01
Morouny (diss.ilit)	Motolo	0.75		22/07/2022	µg/i	<0.01	<0.01	NS	NS
Mercury (tot upfit)	Metals	0.10		11/07/2022	µg/i	<0.01	<0.01	<0.01	<0.01
Morouny (tot unfilt)	Motolo			12/07/2022	µg/i	<0.02	<0.02	<0.02	~0.02
Mercury (tot unfilt)	Metals			22/07/2022	µg/l	<0.02	<0.02	N0 00	-0 02
Nickel (dise filt)	Motolo			11/07/2022	µg/i	<0.02	<0.02	<0.02	<0.02 0.011
Nickel (diss filt)	Metals			12/07/2022	µg/l	<0.4	<0.4	I.H	0.311
Nickel (diss filt)	Metals			22/07/2022	µg/l	<0.4	<0.4	9.23	4.06
Nickel (tot unfilt)	Metals			11/07/2022	ug/l			10.2	3.81
Nickel (tot unfilt)	Metals			12/07/2022	ug/l	<1	<1	10.2 NS	NS
Nickel (tot unfilt)	Metals			22/07/2022	µg/l	<1 <1	<1	9.56	4.47
Potassium (Dis Filt)	Metals		5	11/07/2022	ma/l	3.76	3.94	6.40	9.31
Potassium (Dis Filt)	Metals		5	12/07/2022	mg/l	3.45	3.30	NS	2.51 NR
Potassium (Dis.Filt)	Metals		5	22/07/2022	ma/l	2.40	3 13	8.62	3.01
Potassium (Tot, Unfilt.)	Metals		5	11/07/2022	ma/l	4 25	3.83	7 9	2 45
Potassium (Tot, Unfilt.)	Metals		5	12/07/2022	ma/l	3.89	3.87	NS	NS
Potassium (Tot, Unfilt.)	Metals		5	22/07/2022	ma/l	2.09	3.12	9.51	2.9
Selenium (diss_filt)	Metals			11/07/2022	ug/l	<1	<1	<1	<u>د1</u>
Selenium (diss_filt)	Metals			12/07/2022	ug/l	-1	-1	NR	NG
Selenium (diss.filt)	Metals			22/07/2022	µg/l	<1	<1	<1	<1
Selenium (tot.unfilt)	Metals			11/07/2022	µg/l	<1	<1	<1	<1
Selenium (tot.unfilt)	Metals			12/07/2022	µg/l	<1	<1	NS	NS
Selenium (tot.unfilt)	Metals			22/07/2022	µg/l	<1	<1	<1	<1

Exceedance of Limit									
NS: Not Sampled									
COMPOUND NAME	COMPOUND CLASS	GROUNDWATER REGULATIONS S.I. No. 9 of 2010	INTERIM GUIDELINE VALUES (IGV's) (EPA 2004)	SAMPLING DATE	UNITS	BH6	BH7	FW1	SP
Sodium (Dis.Filt)	Metals			11/07/2022	mg/l	50.3	40.7	13.6	11.9
Sodium (Dis.Filt)	Metals			12/07/2022	mg/l	41.4	57.8	NS	NS
Sodium (Dis.Filt)	Metals			22/07/2022	mg/l	36.5	49	16.2	21.4
Sodium (Tot. Unfilt.)	Metals		150	11/07/2022	mg/l	55.4	45.1	16.9	12.3
Sodium (Tot. Unfilt.)	Metals		150	12/07/2022	mg/l	44.7	63.5	NS	NS
Sodium (Tot. Unfilt.)	Metals		150	22/07/2022	mg/l	37.6	53.1	16.4	20.3
Zinc (diss.filt)	Metals	75.00	100	11/07/2022	µg/l	1.39	1.02	16.9	2.52
Zinc (diss.filt)	Metals	75.00	100	12/07/2022	µg/l	<1	<1	NS	NS
Zinc (diss.filt)	Metals	75.00	100	22/07/2022	µg/l	1.54	1.1	25.7	3.77
Zinc (tot.unfilt)	Metals			11/07/2022	µg/l	<5	<5	18.2	7.32
Zinc (tot.unfilt)	Metals			12/07/2022	µg/l	<5	<5	NS	NS
Zinc (tot.unfilt)	Metals			22/07/2022	µg/l	<5	<5	17.6	<5
Coliforms, Total	Microbiological		0	11/07/2022	MPN/100ml	<1	<1	18.5	>2420
Coliforms, Total	Microbiological		0	12/07/2022	MPN/100ml	13.4	<1	NS	NS
Coliforms, Total	Microbiological		0	22/07/2022	MPN/100ml	<1	4.1	18.9	>2420
Escherichia Coli	Microbiological		0	11/07/2022	MPN/100ml	<1	<1	4.1	44.1
Escherichia Coli	Microbiological		0	12/07/2022	MPN/100ml	1	<1	NS	NS
Escherichia Coli	Microbiological		0	22/07/2022	MPN/100ml	<1	<1	5.2	69.1

REPORT TO Firlough Hydrogen Plant, Groundwater Supply Assessment

APPENDIX H

Minerex Environmental Taney hall Eglinton Terrace Dundrum Dublin Dublin 14

Attention: Chris Fennell

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 05 August 2022 Minerex Environmental 220714-59 3131-028-COC1 Firlough - Ballina 656846

This report has been revised and directly supersedes 656495 in its entirety.

We received 6 samples on Thursday July 14, 2022 and 6 of these samples were scheduled for analysis which was completed on Friday August 05, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results. The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version: 3.3 Version Issued: 05/08/2022

Validated

SDG: 220714-59 Client Ref.: 3131-028-COC1

Report Number: 656846 Location: Firlough - Ballina

Superseded Report:

656495

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
26586215	3131-BH6A-COC1		0.00 - 0.00	11/07/2022
26586224	3131-BH7A-COC1		0.00 - 0.00	11/07/2022
26586236	3131-BH6B-COC1		0.00 - 0.00	12/07/2022
26586245	3131-BH7B-COC1		0.00 - 0.00	12/07/2022
26586254	3131-FW1A-COC1		0.00 - 0.00	11/07/2022
26586264	3131-SP1A-COC1		0.00 - 0.00	11/07/2022

Only received samples which have had analysis scheduled will be shown on the following pages.

		C	FRT	'IFIC	:ΔТ	FΟ	FΔ	ΝΔΙ	YS	IS											
SI Client R	DG: 220714-59 Ref.: 3131-028-COC1	0		Rep	ort N Lo	umbe catio	r: 65 n: Fi	6846 rlouat	- 1 O	Ilina			Supe	rsedeo	d Repo	ort:	6564	95			
Results Legend X Test No Determination	Lab Sample	Sample No(s)								26586224					26586236		26586245				
Possible Sample Types -	Custom Sample Ref	ier erence						3131-BH6A-COC1						3131-BH7A-COC1					3131-BH6B-COC1		3131-BH7B-COC1
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refe	rence																			
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)						0.00 - 0.00						0.00 - 0.00					0.00 - 0.00		0.00 - 0.00
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contair	ier	1000ml glass bottle (ALE220)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	1000ml glass bottle (ALE220)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	1000ml glass bottle (ALE220)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	1000ml glass bottle (ALE220)	H2SO4 (ALE244)
	Sample T	уре	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW
Alkalinity as CaCO3	All	NDPs: 0 Tests: 6		X						X					X					x	
Ammonium Low	All	NDPs: 0 Tests: 6			X						X					X					x
Anions by Kone (w)	All	NDPs: 0 Tests: 6		X						X					x					x	
BOD True Total	All	NDPs: 0 Tests: 6		x						X					x					x	
COD Unfiltered	All	NDPs: 0 Tests: 6		x						X					x					X	
Coliforms (W)	All	NDPs: 0 Tests: 6		x						X					x					X	
Colour Test	All	NDPs: 0 Tests: 6		x						x					x					x	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 6				x						x					X				
Mercury Dissolved	All	NDPs: 0 Tests: 6				X						X					x				
Mercury Unfiltered	All	NDPs: 0 Tests: 6					x						x					x			
Nitrite by Kone (w)	All	NDPs: 0 Tests: 6						X						X					x		
Phosphate by Kone (w)	All	NDPs: 0 Tests: 6		x						X					x					x	
Suspended Solids	All	NDPs: 0 Tests: 6	x						X						x					x	
Total Metals by ICP-MS	All	NDPs: 0 Tests: 6																			

Validated

Х

Х

Х

		26586245						26586254						26586264
	3131-ВН7В-СОС1													3131-SP1A-COC1
		0.00 - 0.00						0.00 - 0.00						0.00 - 0.00
HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	1000ml glass bottle (ALE220)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	1000ml glass bottle (ALE220)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)
GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW
				x						X				
					x						X			
				x						x				
				x						x				
				x						x				
				x						x				
				x						x				
				~						~				
x						X						X		
x						x						x		
	Y						Y						Y	
	~						~						~	
		X						x						x
				x						x				
			v						v					
			^						^					
	X						X						X	

ALS

SDG: 220714-59 Client Ref.: 3131-028-COC1

CERTIFICATE OF ANALYSIS Report Number: 656846

Location: Firlough - Ballina

Validated

Superseded Report: 656495

Results Legend # ISO17025 accredited.		Cu	stomer Sample Ref.	3131-BH6A-COC1	3131-BH7A-COC1	3131-BH6B-COC1	3131-BH7B-COC1	3131-FW1A-COC1	3131-SP1A-COC1
M mCERTS accredited.									
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.			Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
tot.unfilt Total / unfiltered sample.			Sample Type	Ground Water (GW)	Ground Water (GW)	Ground Water (GW)	Ground Water (GW)	Ground Water (GW)	Ground Water (GW)
 Subcontracted - refer to subcontractor report for accreditation status. 			Date Sampled	11/07/2022	11/07/2022	12/07/2022	12/07/2022	11/07/2022	11/07/2022
** % recovery of the surrogate standard to check the			Sample Time	00:00	00:00	00:00	00:00	00:00	00:00
efficiency of the method. The results of individual compounds within samples aren't corrected for the			Date Received	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
recovery			SDG Ref	220714-59	220714-59	220714-59	220714-59	220714-59	220714-59
(F) Trigger breach confirmed 1.445@ Sample deviation (see appendix)			Lab Sample No.(s)	20300213	20300224	20300230	20300243	20300234	20300204
Component		nite	Mothod						
		00		-1	-14	4	-1	4.4	44.4
	IVIPIN/ I	UUIIII	SUB	S 1	N	I	S I	4.1	44.1
Coliforms, Total*	MPN/1	00ml	SUB	<1	<1	13.4	<1	18.5	>2420
Suspended solids. Total	<2 m	na/l	TM022	<2	<2	<2	34	<2	3.05
	۰ ۲ ۱۱	'9/'	111022	-2-	<u>-</u> د	<u>۲</u>	U. 4	<u>۲</u>	0.00 #
		_		#	#	#	#	#	#
Alkalinity, Total as CaCO3	<2 m	ng/l	TM043	465	470	470	450	440	395
				#	#	#	#	#	#
BOD, unfiltered	<1 m	ng/l	TM045	<10	2	2.17	22	<1	<1
		Ŭ.		#	#	#	#	#	#
Ammoniacal Nitrogen as N (low level)	<0.01	ma/l	TMOOO	0.345	03	0.200	0.313	0.0351	0.0180
Annihoniacai Millogen as N (low level)	NU.U 1	iiig/i	110099	0.345	0.5	0.299	0.313	0.0551	0.0109
				#	#	#	#	#	#
COD, unfiltered	<7 m	ng/l	TM107	<7	<7	8.48	<7	<7	13.7
				#	#	#	#	#	#
Aluminium (diss.filt)	<10 י	Ja/I	TM152	<10	<10	<10	<10	<10	<10
· (· · · · · · · · · · · · · · · · · ·		- 9' '		.10	. ц	н. Ш	. IQ Д	. IV Д	. IV Д
Alexandration (backer 1910)		"	T1	#	#	#	#	#	#
Aluminium (tot.unfilt)	<10 µ	ug/l	TM152	<10	18.2	10.7	<10	<10	74.8
				#	#	#	#	#	#
Arsenic (diss.filt)	< 0.5	ua/l	TM152	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	0.01	~g~			#	#	#	#	
A 1 (1) (1)	•		T14450	*	#	#	#	#	#
Arsenic (tot.unfilt)	<2 µ	ig/l	TM152	<2	<2	<2	<2	<2	<2
				#	#	#	#	#	#
Barium (diss.filt)	<0.2	µg/l	TM152	68.7	83.4	70	84.6	67.6	28.7
				#	#	#	#	#	#
Deriver (tet unfill)	-0 F -		TN4450			70 5		70.4	
Banum (tot.uniiit)	<0.5	µg/i	11/1152	68.4	84.8	70.5	83.9	72.1	29.4
				#	#	#	#	#	#
Cadmium (diss.filt)	<0.08	µg/l	TM152	<0.08	<0.08	<0.08	<0.08	0.311	0.11
				#	#	#	#	#	#
Cadmium (tot unfilt)	<0.5	ua/l	TM152	<0.5	<0.5	<0.5	<u></u>	<0.5	<u>~</u> 0.5
	~0.5	µy/i	TIVITJZ	~0.0	~ 0.J	~ 0.0	~ 0.0	~0.0	~0.0
				#	#	#	#	#	#
Chromium (tot.unfilt)	<3 µ	ıg/l	TM152	<3	<3	7.26	10.7	<3	<3
				#	#	#	#	#	#
Chromium (diss.filt)	<1.0	ıa/l	TM152	<1	<1	5.83	9.07	<1	<1
		·9/1	111102	-1 #	., #	0.00 #	0.01 #		., #
			T14450	#	#	#	#	#	#
Copper (tot.unfilt)	<1 µ	ig/l	TM152	<1	<1	1.35	<1	23.9	1.91
				#	#	#	#	#	#
Lead (tot.unfilt)	<1 µ	ıg/l	TM152	<1	<1	<1	<1	<1	<1
		-		#	#	#	#	#	#
Copper (diss filt)	<0.3	ua/l	TM152	<0.3	<0.3	0.585	<0.3	20.8	0.92
	-0.0	μy/i	1111132	۳.0	ч0.0 ш	0.000	чо.о ш	20.0	0.5Z #
				#	#	#	#	#	#
Manganese (tot.unfilt)	<1 µ	ıg/l	TM152	2.47	2.65	3.27	2.99	37.7	6.05
				#	#	#	#	#	#
Lead (diss.filt)	<0.2	µg/l	TM152	<0.2	<0.2	<0.2	<0.2	0.4	<0.2
				#	. #	. #	. #	. #	#
Nickel (tot unfilt)	24		TM150	π	π 1		π 1	10.0	π 2 01
	×ιμ	ıy/ı	111152	S I	SI	S I	S I	IU.Z	3.01
				#	#	#	#	#	#
Manganese (diss.filt)	<3 µ	ıg/l	TM152	<3	3.02	<3	<3	31.8	<3
				#	#	#	#	#	#
Selenium (tot.unfilt)	<1	ıa/l	TM152	<1	<1	<1	<1	<1	<1
	ι	· "	1111102	·' "	, ц	, т	ч ц	ч - Г	·'
Nichal (dica Eli)				#	#	#	#	#	#
NICKEI (diss.filt)	<0.4	µg/l	TM152	<0.4	<0.4	<0.4	<0.4	7.71	0.911
				#	#	#	#	#	#
Selenium (diss.filt)	<1 u	ıg/l	TM152	<1	<1	<1	<1	<1	<1
		-		#	#	#	#	#	#
Zinc (tot unfilt)	~E ··		TM152	-5	π ~5	π ~5	<i>π</i>	π 12 0	π 7 20
∠n o (tot.uniiit)	<5 µ	ıy/ı	111152	^ D	` ⊃	5 0	5 0	10.2	1.32
				#	#	#	#	#	#
Zinc (diss.filt)	<1µ	ıg/l	TM152	1.39	1.02	<1	<1	16.9	2.52
				#	#	#	#	#	#
Sodium (Dis.Filt)	<0 076	ma/l	TM152	50.3	40.7	41.4	57 8	13.6	11.9
· · · · ·	.0.070	. ,,		4		#	4	.0.0	
Magnasium (Dia 5 th)			T1	#	#	#	#	#	#
wagnesium (Dis.Filt)	<0.036	mg/l	IM152	43.2	43.6	43.6	41.4	8.73	9.16
				#	#	#	#	#	#
Potassium (Dis.Filt)	<0.2 r	ng/l	TM152	3.76	3.34	3.45	3.39	6.4	2.31
		-		#	#	#	#	#	#
Calcium (Dis Filt)	<u>د ۲۰</u>	ma/l	TM152	۳ ۵۵ ک	π 72.6	π 76.0	π 77 7	166	π 1/17
	~ ∪.2 ľ	iiy/i	TIVITOZ	00.2	12.0	/0.2	11.1	100	147
				#	#	#	#	#	#

SDG: 220714-59 Client Ref.: 3131-028-COC1

CERTIFICATE OF ANALYSIS Report Number: 656846

Location: Firlough - Ballina

656495 Superseded Report:

					_								
Results Legend i ISO/128 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.fitt Dissolved / fittered sample. tot.unfitt Tobal / unfittered sample. * Subcontracted - refer to subcontractor report for accreditation status. * % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery (F) Trigger breach confirmed 1-4+298 Sample deviation (see appendix)		Cu	stomer Sample Ref. Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	3131-BH6A-COC1 0.00 - 0.00 Ground Water (GW) 11/07/2022 00:00 14/07/2022 220714-59 26586215		3131-BH7A-COC1 0.00 - 0.00 Ground Water (GW) 11/07/2022 00:00 14/07/2022 220714-59 26566224		3131-BH6B-COC1 0.00 - 0.00 Ground Water (GW) 12/07/2022 00:00 14/07/2022 220714-59 26586236	0.00 - 0.00 Ground Water (GW) 12/07/2022 00:00 14/07/2022 220714-59 26566245		3131-FW1A-COC1 0.00 - 0.00 Ground Water (GW) 11/07/2022 00:00 14/07/2022 220714-59 26586254	0.00 - 0.00 Ground Water (00 11/07/2022 00:00 14/07/2022 220714-59 26586264	1)
Component	LOD/U	Inits	Method										
Iron (Dis.Filt)	<0.019) mg/l	TM152	<0.019	#	<0.019 #		<0.019 #	<0.019	#	<0.019 #	0.0272	#
Sodium (Tot. Unfilt.)	<0.047	' mg/l	TM152	55.4	#	45.1 #		44.7 #	63.5	#	16.9 #	12.3	#
Magnesium (Tot. Unfilt.)	<0.05	mg/l	TM152	48.4	#	49.7 #		47.4 #	46.3	#	11.3 #	10.1	#
Potassium (Tot. Unfilt.)	<0.2 ו	mg/l	TM152	4.25	#	3.83 #	Γ	3.89 #	3.87	#	7.9 #	2.45	#
Calcium (Tot. Unfilt.)	<0.057	′ mg/l	TM152	74	#	81.9 #	Γ	84 #	83.8	#	183 #	154	#
Iron (Tot. Unfilt.)	<0.024	l mg/l	TM152	<0.024	#	0.041 #		<0.024 #	<0.024	#	0.0434 #	0.582	#
Hardness, Total as CaCO3 unfiltered	<0.35	mg/l	TM152	385		409	T	405	400		504	427	
Mercury (diss.filt)	<0.01	µg/l	TM183	<0.01	#	<0.01 #	T	<0.01 #	<0.01	#	<0.01	<0.01	#
Mercury (tot.unfilt)	<0.02	µg/l	TM183	<0.02	#	<0.02	T	<0.02 #	<0.02	#	<0.02	<0.02	#
Nitrite as NO2	<0.05	mg/l	TM184	<0.05	#	<0.05	T	<0.05	<0.05	#	<0.05	<0.05	#
Sulphate	<2 m	ng/l	TM184	13.6	#	14.7		28.7	23.1	#	10.7 #	12.7	#
Chloride	<2 m	ng/l	TM184	33.9	#	34.6		30.4 #	50	#	31 #	21.8	#
Phosphate (Ortho as P)	<0.02	mg/l	TM184	<0.02	#	<0.02	T	<0.02 #	<0.02	#	<0.02	<0.02	#
Nitrate as N	<0.07	mg/l	TM184	<0.07		<0.07	Γ	0.296	<0.07		0.579	0.746	
Apparent Colour	<1 m Pt/C	ng/l Co	TM261	6.9		6.1	T	9.7	29.6		14.2	17.2	
True Colour	<1 m Pt/C	ng/l Co	TM261	<1		<1		1	<1		9.9	14.3	
							┝						
							┢						
					_		┢						
							t						
							t						
							T						
							T						
							T						
							T						
							T						
							T						
							T						
							Γ						
							T						

Validated

CERTIFICATE OF ANALYSIS

Report Number: 656846 Location: Firlough - Ballina Superseded Report:

656495

Validated

Table of Results - Appendix

Method No	Reference	Description
SUB		Subcontracted Test
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM152	ISO 17294-2:2016 Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS)	Analysis of Aqueous Samples by ICP-MS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM261	Colour and Turbidity of Waters, Methods for the Examination of Waters and Associated Materials, HMSO, 1981, ISBN 0-11-7519553	Determination of True and Apparent Colour by Spectrophotometry

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM).

Total Metals by ICP-MS

CERTIFICATE OF ANALYSIS

Report Number: 656846 Location: Firlough - Ballina Superseded Report: 656495

Validated

Test Completion Dates						S
Lab Sample No(s)	26586215	26586224	26586236	26586245	26586254	26586264
Customer Sample Ref.	3131-BH6A-COC1	3131-BH7A-COC1	3131-BH6B-COC1	3131-BH7B-COC1	3131-FW1A-COC1	3131-SP1A-COC1
AGS Ref.						
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Ground Water					
Alkalinity as CaCO3	21-Jul-2022	21-Jul-2022	21-Jul-2022	21-Jul-2022	21-Jul-2022	21-Jul-2022
Ammonium Low	19-Jul-2022	19-Jul-2022	19-Jul-2022	19-Jul-2022	19-Jul-2022	19-Jul-2022
Anions by Kone (w)	19-Jul-2022	19-Jul-2022	19-Jul-2022	19-Jul-2022	19-Jul-2022	19-Jul-2022
BOD True Total	19-Jul-2022	19-Jul-2022	20-Jul-2022	19-Jul-2022	19-Jul-2022	19-Jul-2022
COD Unfiltered	20-Jul-2022	20-Jul-2022	20-Jul-2022	20-Jul-2022	20-Jul-2022	20-Jul-2022
Coliforms (W)	18-Jul-2022	18-Jul-2022	18-Jul-2022	18-Jul-2022	18-Jul-2022	18-Jul-2022
Colour Test	16-Jul-2022	16-Jul-2022	16-Jul-2022	16-Jul-2022	16-Jul-2022	16-Jul-2022
Dissolved Metals by ICP-MS	05-Aug-2022	05-Aug-2022	05-Aug-2022	05-Aug-2022	05-Aug-2022	05-Aug-2022
Mercury Dissolved	18-Jul-2022	18-Jul-2022	18-Jul-2022	18-Jul-2022	18-Jul-2022	18-Jul-2022
Mercury Unfiltered	18-Jul-2022	18-Jul-2022	18-Jul-2022	18-Jul-2022	18-Jul-2022	19-Jul-2022
Nitrite by Kone (w)	14-Jul-2022	14-Jul-2022	14-Jul-2022	14-Jul-2022	14-Jul-2022	14-Jul-2022
Phosphate by Kone (w)	14-Jul-2022	14-Jul-2022	14-Jul-2022	14-Jul-2022	14-Jul-2022	14-Jul-2022
Suspended Solids	20-Jul-2022	20-Jul-2022	20-Jul-2022	20-Jul-2022	20-Jul-2022	20-Jul-2022

21-Jul-2022

21-Jul-2022

21-Jul-2022

21-Jul-2022

19-Jul-2022

21-Jul-2022

DETAILED IN SCOPE REG NO. 138T

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Certificate Of Analysis

Job Number:22-26302Issue Number:1Report Date:14 July 2022

Site:Not ApplicablePO Number:Not SuppliedDate Samples Received:13/07/2022

Please find attached the results for the samples received at our laboratory on 13/07/2022.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Kouise dokeow

Louise Morrow

Authorised Date: 14 July 2022

Notes are not INAB accredited

Results relate only to the items tested. Information on methods of analysis and uncertainty of measurement is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Page 1 of 7

Template: 1146 Revision: 018

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

DETAILED IN SCOPE REG NO. 1387

Report Reference: 22-26302

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Site:	Not Applicable		
Sample Description:	3131 - BH6A	Date of Sampling:	13/07/2022
Sample Type:	Ground	Date Sample Received:	13/07/2022
Lab Reference Numbe	er: 661337		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	13/07/2022	Coliforms	< 1.0	MPN/100ml	-
D/D1201#	13/07/2022	E.coli	< 1.0	MPN/100ml	-

Comments

The sampling time has not been communicated; time taken for analysis cannot be assessed.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note: PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 7

Report Reference: 22-26302

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane

Hawarden, Deeside UK CH5 3US

Site:	Not Applicable		
Sample Description:	3131 - BH7A	Date of Sampling:	13/07/2022
Sample Type:	Ground	Date Sample Received:	13/07/2022
Lab Reference Numbe	r: 661338		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	13/07/2022	Coliforms	< 1.0	MPN/100ml	-
D/D1201#	13/07/2022	E.coli	< 1.0	MPN/100ml	-

Comments

The sampling time has not been communicated; time taken for analysis cannot be assessed.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note: PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 3 of 7

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

DETAILED IN SCOPE REG NO. 1387

Report Reference: 22-26302

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Site:	Not Applicable		
Sample Description:	3131 - SP1A	Date of Sampling:	13/07/2022
Sample Type:	Ground	Date Sample Received:	13/07/2022
Lab Reference Numbe	r: 661339		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	13/07/2022	Coliforms	> 2419.6	MPN/100ml	-
D/D1201#	13/07/2022	E.coli	44.1	MPN/100ml	-

Comments

The sampling time has not been communicated; time taken for analysis cannot be assessed.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note: PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 4 of 7

Report Reference: 22-26302

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Customer Services

ALS Life Sciences Hawarden Business Park

Manor Lane Hawarden, Deeside UK CH5 3US

Site:	Not Applicable		
Sample Description:	3131 - FW1A	Date of Sampling:	13/07/2022
Sample Type:	Ground	Date Sample Received:	13/07/2022
Lab Reference Numbe	r: 661340		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	13/07/2022	Coliforms	18.5	MPN/100ml	-
D/D1201#	13/07/2022	E.coli	4.1	MPN/100ml	-

Comments

The sampling time has not been communicated; time taken for analysis cannot be assessed.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note: PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 5 of 7

Tel: (01) 613 6003 Fax: (01) 613 6008

DETAILED IN SCOPE REG NO. 1387

Report Reference: 22-26302

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Site:	Not Applicable		
Sample Description:	3131 - BH6B	Date of Sampling:	13/07/2022
Sample Type:	Ground	Date Sample Received:	13/07/2022
Lab Reference Numbe	er: 661341		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	13/07/2022	Coliforms	13.4	MPN/100ml	-
D/D1201#	13/07/2022	E.coli	1.0	MPN/100ml	-

Comments

The sampling time has not been communicated; time taken for analysis cannot be assessed.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note: PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 6 of 7

Report Reference: 22-26302

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside

UK CH5 3US

Site:	Not Applicable		
Sample Description:	3131 - BH7B	Date of Sampling:	13/07/2022
Sample Type:	Ground	Date Sample Received:	13/07/2022
Lab Reference Number	r: 661342		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	13/07/2022	Coliforms	< 1.0	MPN/100ml	-
D/D1201#	13/07/2022	E.coli	< 1.0	MPN/100ml	-

Comments

The sampling time has not been communicated; time taken for analysis cannot be assessed.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note: PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 7 of 7

220714-59 3131-028-COC1 Report Number: 656846 Location: Firlough - Ballina

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.</p>

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
6	Sample holding time exceeded due to late arrival of instructions or
w w	samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cio d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib io us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528777 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Minerex Environmental Taney hall Eglinton Terrace Dundrum Dublin Dublin 14 Attention: Chris Fennell

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 03 August 2022 Minerex Environmental 220726-47 3131-028-COC2 Firlough - Ballina 656540

This report has been revised and directly supersedes 656112 in its entirety.

We received 4 samples on Tuesday July 26, 2022 and 4 of these samples were scheduled for analysis which was completed on Tuesday August 02, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

<u>Sonia McWhan</u> Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version: 3.3 Version Issued: 03/08/2022

SDG: 220726-47 Client Ref.: 3131-028-COC2

Report Number: 656540 Location: Firlough - Ballina

Superseded Report: 656112

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
26638322	3131-BH6C-COC1		0.00 - 0.00	22/07/2022
26638331	3131-BH7C-COC1		0.00 - 0.00	22/07/2022
26638340	3131-FW1B-COC1		0.00 - 0.00	22/07/2022
26638349	3131-SP1B-COC1		0.00 - 0.00	22/07/2022

Only received samples which have had analysis scheduled will be shown on the following pages.

		CER			ΔΤΙ	FΟ	FA		1 Y	<u>/SIS</u>									Valio	date	Ł
SDG: <u>Client Ref.:</u>	220726-47 3131-028-COC2	02.	Re	eport	: Nui Loci	mber atior	r: 65 n: Fi	5654 rlou	.0 gh - E	Ballir	na	S	uper	sedeo	l Rep	ort:	656	5112			
Results Legend	Lab Sample	No(s)					2663832					2663833					2663834				2663834
No Determination Possible							22					31					د 0				Е 6t
Sample Types -	Custome Sample Refe	er rence					131-BH6C-COC1					131-BH7C-COC1					131-FW1B-COC1				131-SP1B-COC1
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce																			
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (n	1)					0.00 - 0.00					0.00 - 0.00					0.00 - 0.00			0.00 - 0.00	
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	1000ml glass bottle (ALE220)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	1000ml glass bottle (ALE220)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	1000ml glass bottle (ALE220)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	1000ml glass bottle (ALE220)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	HNO3 Unfiltered (ALE204)
	Sample Ty	pe	C V	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	CW	GW	CW
Alkalinity as CaCO3	All	NDPs: 0 Tests: 4	x					X					X					X			
Ammonium Low	All	NDPs: 0 Tests: 4	~	Y				^	Y				~	Y				~	Y		
Anions by Kone (w)	All	NDPs: 0 Tests: 4	Y	<u>^</u>				Y	^				Y	^				Y	<u>^</u>		
BOD True Total	All	NDPs: 0 Tests: 4	x					x					x					x			
COD Unfiltered	All	NDPs: 0 Tests: 4	X					X					X					X			
Coliforms (W)	All	NDPs: 0 Tests: 4	X					X					X					X			
Colour Test	All	NDPs: 0 Tests: 4	X					X					X					X			
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 4			X					x					X					X	
Mercury Dissolved	All	NDPs: 0 Tests: 4			X					x					X					x	
Mercury Unfiltered	All	NDPs: 0 Tests: 4				X					X					X					X
Nitrite by Kone (w)	All	NDPs: 0 Tests: 4					X					X					X				
Phosphate by Kone (w)	All	NDPs: 0 Tests: 4	x					X					X					x			
Suspended Solids	All	NDPs: 0 Tests: 4	x					x					x					x			
Total Metals by ICP-MS	All	NDPs: 0 Tests: 4				x					X					X					X

L

26638349	
3131-SP1B-COC1	
0.00 - 0.00	
NaOH (ALE245)	
GW	
x	

Report Number: 656540 Location: Firlough - Ballina Superseded Report: 656112

Results Legend # ISO17025 accredited.	Cus	tomer Sample Ref.	3131-BH6C-COC1	3131-BH7C-COC1	3131-FW1B-COC1	3131-SP1B-COC1	
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot unfilterate / unfiltered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	
* Subcontracted - refer to subcontractor repo accreditation status.	ort for	Sample Type Date Sampled	Ground Water (GW) 22/07/2022	Ground Water (GW) 22/07/2022	Ground Water (GW) 22/07/2022	Ground Water (GW) 22/07/2022	
** % recovery of the surrogate standard to che efficiency of the method. The results of indi	eck the ividual	Sample Time Date Received	00:00 26/07/2022	00:00 26/07/2022	00:00 26/07/2022	00:00 26/07/2022	
compounds within samples aren't corrected recovery	d for the	SDG Ref	220726-47	220726-47 26638331	220726-47 26638340	220726-47 26638349	
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	'	AGS Reference	20030322	20030331	20030340	2000040	
Component Escherichia Coli (W)*	LOD/Units MPN/100m	Method	<1	<1	5.2	69.1	
		000		.,	0.2	00.1	
Coliforms, Total*	MPN/100m	I SUB	<1	4.1	18.9	>2420	
Suspended solids, Total	<2 mg/l	TM022	<2 #	<2 #	<2 #	13.7 #	
Alkalinity, Total as CaCO3	<2 mg/l	TM043	441 #	464 #	430 #	381 #	
BOD, unfiltered	<1 mg/l	TM045	<1 @#	7.11 @#	<1 @#	<1 @#	
Ammoniacal Nitrogen as N (low level)	<0.01 mg/l	TM099	0.279 #	0.303 #	0.0411 #	0.0437 #	
COD, unfiltered	<7 mg/l	TM107	<7 #	<7 #	<7 #	10.6 #	
Aluminium (diss.filt)	<10 µg/l	TM152	<10 #	<10 #	<10 #	<10 #	
Aluminium (tot.unfilt)	<10 µg/l	TM152	<10 #	<10 #	<10 #	27.3 #	
Arsenic (diss.filt)	<0.5 µg/l	TM152	<0.5 #	<0.5 #	<0.5 #	<0.5 #	
Arsenic (tot.unfilt)	<2 µg/l	TM152			~2 #	~2 #	
Barium (diss.filt)	<0.2 µg/l	TM152	81 #	92 #	67.6 #	24.6 #	
Barium (tot.unfilt)	<0.5 µg/l	TM152	83.8 #	90.1 #	70.8 #	25 #	
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08 #	<0.08 #	0.257 #	0.132 #	
Cadmium (tot.unfilt)	<0.5 µg/l	TM152	<0.5	<0.5	<0.5	<0.5	
Chromium (tot.unfilt)	<3 µg/l	TM152	<3 #	<3 #	<3 #	<3 #	
Chromium (diss.filt)	<1 µg/l	TM152	<1 #	<1 #	<1 #	<1 #	
Copper (tot.unfilt)	<1 µg/l	TM152	<1 #	<1 #	31 #	1.4 #	
Lead (tot.unfilt)	<1 µg/l	TM152	<1 #	<1 #	<1 #	<1 #	
Copper (diss.filt)	<0.3 µg/l	TM152	0.398 #	<0.3	23.9 #	1.45 #	
Manganese (tot.unfilt)	<1 µg/l	TM152	4.33 #	3.79 #	28.1 #	5.32 #	
Lead (diss.filt)	<0.2 µg/l	TM152	0.595 #	<0.2 #	0.536 #	<0.2 #	
Nickel (tot.unfilt)	<1 µg/l	TM152	<1 #	<1 #	9.56 #	4.47 #	
Manganese (diss.filt)	<3 µg/l	TM152	5.33 #	3.85 #	26.2 #	4.19 #	
Selenium (tot.unfilt)	<1 µg/l	TM152	<1 #	<1 #	<1 #	<1 #	
Nickel (diss.filt)	<0.4 µg/l	TM152	<0.4 #	<0.4 #	9.23	4.06	
Selenium (diss.filt)	<1 µg/l	TM152	<1 #	<1 #	<1 #	<1 #	
Zinc (tot.unfilt)	<5 µg/l	TM152	<5 #	<5 #	17.6 #	<5 #	
Zinc (diss.filt)	<1 µg/l	TM152	1.54 #	1.1	25.7 #	3.77 #	
Sodium (Dis.Filt)	<0.076 mg/	1 TM152	36.5	49 #	16.2 #	21.4 #	
Magnesium (Dis.Filt)	<0.036 mg/	1 TM152	41.6	41.7 #	8.97	8.85	
Potassium (Dis.Filt)	<0.2 mg/l	TM152	2.86	3.13#	8.62	3.01 #	
Calcium (Dis.Filt)	<0.2 mg/l	TM152	83.3	79 #	156 #	144 #	

Superseded Report: 656112

Report Number: 656540 Location: Firlough - Ballina

Results Legend # ISO17025 accredited.		Custon	ner Sample Ref.	3131-BH6C-COC1	3131-BH7C-COC1	3131-FW1B-COC1	3131-SP1B-COC1	
# ISO 1022 accreates. M mCER23 accreates. aq Aqueous / settled sample. diss.fit Dissolved / fittered sample. Subcontracted - refer to subcontractor repr accreditation status. * Wrecovery of the surrogate standard to ch efficiency of the method. The results of indi compounds within samples aren't corrected recovery (F) Trigger breach confirmed 14+s@ Sample deviation (see appendix)	ort for eck the ividual d for the	Lab #	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Sample No.(s) AGS Reference	0.00 - 0.00 Ground Water (GW) 22/07/2022 00:00 26/07/2022 220726-47 26638322	0.00 - 0.00 Ground Water (GW) 22/07/2022 000:00 26/07/2022 220726-47 26638331	0.00 - 0.00 Ground Water (GW) 22/07/2022 00:00 26/07/2022 220726-47 26638340	0.00 - 0.00 Ground Water (GW) 22/07/2022 00:00 26/07/2022 220726-47 26638349	
Component	LOD/Ur	nits	Method					
Iron (Dis.Filt)	<0.019 ו	mg/l	TM152	<0.019	<0.019	<0.019	<0.019	
Sodium (Tot. Unfilt.)	<0.047 ı	mg/l	TM152	37.6 #	# 53.1 #	# 16.4 #	# 20.3 #	
Magnesium (Tot. Unfilt.)	<0.05 n	ng/l	TM152	41.8 #	40.6 #	9.47 #	8.78 #	
Potassium (Tot. Unfilt.)	<0.2 m	ng/l	TM152	2.89 #	3.12 #	9.51 #	2.9 #	
Calcium (Tot. Unfilt.)	<0.057 ı	mg/l	TM152	87.7 #	79.5 #	160 #	143 #	
Iron (Tot. Unfilt.)	<0.024 ı	mg/l	TM152	<0.024 #	<0.024 #	<0.024 #	0.131 #	
Hardness, Total as CaCO3 unfiltered	<0.35 n	ng/l	TM152	392	366	439	387	
Mercury (diss.filt)	<0.01 µ	µg/l	TM183	<0.01 #	<0.01 #	<0.01 #	<0.01 #	
Mercury (tot.unfilt)	<0.02 µ	µg/l	TM183	<0.02 #	<0.02 #	<0.02 #	<0.02 #	
Nitrite as NO2	<0.05 n	ng/l	TM184	<0.05 #	<0.05 #	<0.05 #	<0.05 #	
Sulphate	<2 mç	g/I	TM184	17.5 #	25.5 #	12.5 #	23.7 #	
Chloride	<2 mę	g/l	TM184	31.8 #	43.3 #	35.9 #	23.1 #	
Phosphate (Ortho as P)	<0.02 n	ng/l	TM184	<0.02 #	<0.02 #	<0.02 #	<0.02 #	
Nitrate as N	<0.07 n	ng/l	TM184	<0.07	<0.07	1.34	0.347	
Apparent Colour	<1 mg Pt/Co	g/l >	TM261	19.5	70	19.8	36.1	
True Colour	<1 mg Pt/Co	g/l >	TM261	<1	1.7	11	15.9	

Report Number: 656540 Location: Firlough - Ballina Superseded Report: 656112

Validated

Table of Results - Appendix

Method No	Reference	Description
SUB		Subcontracted Test
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM152	ISO 17294-2:2016 Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS)	Analysis of Aqueous Samples by ICP-MS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM261	Colour and Turbidity of Waters, Methods for the Examination of Waters and Associated Materials, HMSO, 1981, ISBN 0.11.7519553.	Determination of True and Apparent Colour by Spectrophotometry

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM).

Report Number: 656540 Location: Firlough - Ballina Superseded Report: 656112

Validated

Test Completion Dates

Lab Sample No(s)	26638322	26638331	26638340	26638349
Customer Sample Ref.	3131-BH6C-COC1	3131-BH7C-COC1	3131-FW1B-COC1	3131-SP1B-COC1
AGS Ref.				
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Ground Water	Ground Water	Ground Water	Ground Water
Alkalinity as CaCO3	27-Jul-2022	27-Jul-2022	29-Jul-2022	27-Jul-2022
Ammonium Low	27-Jul-2022	27-Jul-2022	27-Jul-2022	27-Jul-2022
Anions by Kone (w)	27-Jul-2022	27-Jul-2022	27-Jul-2022	27-Jul-2022
BOD True Total	02-Aug-2022	02-Aug-2022	02-Aug-2022	02-Aug-2022
COD Unfiltered	01-Aug-2022	02-Aug-2022	01-Aug-2022	02-Aug-2022
Coliforms (W)	29-Jul-2022	29-Jul-2022	29-Jul-2022	29-Jul-2022
Colour Test	27-Jul-2022	27-Jul-2022	28-Jul-2022	27-Jul-2022
Dissolved Metals by ICP-MS	28-Jul-2022	28-Jul-2022	28-Jul-2022	28-Jul-2022
Mercury Dissolved	27-Jul-2022	27-Jul-2022	27-Jul-2022	27-Jul-2022
Mercury Unfiltered	29-Jul-2022	29-Jul-2022	29-Jul-2022	29-Jul-2022
Nitrite by Kone (w)	27-Jul-2022	27-Jul-2022	27-Jul-2022	27-Jul-2022
Phosphate by Kone (w)	27-Jul-2022	27-Jul-2022	27-Jul-2022	27-Jul-2022
Suspended Solids	29-Jul-2022	29-Jul-2022	29-Jul-2022	29-Jul-2022
Total Metals by ICP-MS	01-Aug-2022	01-Aug-2022	28-Jul-2022	01-Aug-2022

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Certificate Of Analysis

Job Number:22-26985Issue Number:1Report Date:29 July 2022

Site: Minerex PO Number: Not Supplied Date Samples Received: 25/07/2022

Please find attached the results for the samples received at our laboratory on 25/07/2022.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Alebana

Authorised Date: 29 July 2022

Aoife de Barra

Notes are not INAB accredited

Results relate only to the items tested. Information on methods of analysis and uncertainty of measurement is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Report Reference: 22-26985 Report Version: 1

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Customer Services

Customer

Site:	Minerex		
Sample Description:	3131-BH6C	Date of Sampling:	22/07/2022
Sample Type:	Ground	Date Sample Received:	25/07/2022
Lab Reference Number	r: 663201		

Certificate Of Analysis

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201	25/07/2022	Coliforms	< 1.0	MPN/100ml	-
D/D1201	25/07/2022	E.coli	< 1.0	MPN/100ml	-

Comments

Sampling date has been provided but is outside the recommended timeframe on receipt

The sampling time has not been communicated; time taken for analysis cannot be assessed.

Deviations from the standard testing conditions observed. Coli and E.coli Results are reported outside the specifications of the accredited method.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 5

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Report Reference: 22-26985 Report Version: 1

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Customer Services

Customer

Site:	Minerex		
Sample Description:	3131-BH7C	Date of Sampling:	22/07/2022
Sample Type:	Ground	Date Sample Received:	25/07/2022
Lab Reference Number	r: 663202		

Certificate Of Analysis

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201	25/07/2022	Coliforms	4.1	MPN/100ml	-
D/D1201	25/07/2022	E.coli	< 1.0	MPN/100ml	-

Comments

Sampling date has been provided but is outside the recommended timeframe on receipt

The sampling time has not been communicated; time taken for analysis cannot be assessed.

Deviations from the standard testing conditions observed. Coli and E.coli Results are reported outside the specifications of the accredited method.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

- PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.
- For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 3 of 5

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Report Reference: 22-26985 Report Version: 1

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Customer Services

Customer

Site:	Minerex		
Sample Description:	3131-SP1B	Date of Sampling:	22/07/2022
Sample Type:	Ground	Date Sample Received:	25/07/2022
Lab Reference Number	r: 663203		

Certificate Of Analysis

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201	25/07/2022	Coliforms	> 2419.6	MPN/100ml	-
D/D1201	25/07/2022	E.coli	69.1	MPN/100ml	-

Comments

Sampling date has been provided but is outside the recommended timeframe on receipt

The sampling time has not been communicated; time taken for analysis cannot be assessed.

Deviations from the standard testing conditions observed. Coli and E.coli Results are reported outside the specifications of the accredited method.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

- PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.
- For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 4 of 5

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Report Reference: 22-26985 Report Version: 1

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Customer Services

Customer

Site:	Minerex		
Sample Description:	3131-FW1B	Date of Sampling:	22/07/2022
Sample Type:	Ground	Date Sample Received:	25/07/2022
Lab Reference Number	r: 663204		

Certificate Of Analysis

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201	25/07/2022	Coliforms	18.9	MPN/100ml	-
D/D1201	25/07/2022	E.coli	5.2	MPN/100ml	-

Comments

Sampling date has been provided but is outside the recommended timeframe on receipt

The sampling time has not been communicated; time taken for analysis cannot be assessed.

Deviations from the standard testing conditions observed. Coli and E.coli Results are reported outside the specifications of the accredited method.

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 5 of 5

Report Number: 656540 Location: Firlough - Ballina Superseded Report: 656112

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials and soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysof le	WhiteAsbestos
Amosite	Brow n Asbestos
Cio d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fibious Anthophyllite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μm diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.